The knowledge and innovation generated by researchers at universities is transferred to industries through patent licensing, leading to the commercialization of academic output. In order to investigate the development of Chinese university–industry technology transfer and whether this kind of collaboration may affect a firm’s innovation output, we collected approximately 6400 license contracts made between more than 4000 Chinese firms and 300 Chinese universities for the period between 2009 and 2014. This is the first study on Chinese university–industry knowledge transfer using a bipartite social network analysis (SNA) method, which emphasizes centrality estimates. We are able to investigate empirically how patent license transfer behavior may affect each firm’s innovative output by allocating a centrality score to each firm in the university–firm technology transfer network. We elucidate the academic–industry knowledge by visualizing flow patterns for different regions with the SNA tool, Gephi. We find that innovation capabilities, R&D resources, and technology transfer performance all vary across China, and that patent licensing networks present clear small-world phenomena. We also highlight the Bipartite Graph Reinforcement Model (BGRM) and BiRank centrality in the bipartite network. Our empirical results reveal that firms with high BGRM and BiRank centrality scores, long history, and fewer employees have greater innovative output.
As an integral part of economic trade, energy trade is crucial to international dynamics and national interests. In this study, an international energy trade network is constructed by abstracting countries as nodes and representing energy trade relations as edges. A variety of indicators are designed in terms of networks, nodes, bilaterals, and communities to analyze the temporal and spatial evolution of the global energy trade network from 2001 to 2020. The results indicate that network density and strength have been steadily increasing since the beginning of the 21st century. It is observed that the position of the United States as the core of the international energy market is being impacted by emerging developing countries, thus affecting the existing trade balance based on topological analysis. The weighted analysis of bilateral relations demonstrates that emerging countries such as China, Brazil, and Saudi Arabia are pursuing closer cooperation. The community analysis reveals that an increasing number of countries possess strong energy trade capabilities, resulting in a corresponding increase in energy trade volumes.
As automobiles are major contributors to greenhouse gas emissions, the technological shift towards vehicle powertrain systems is an attempt to lower problems such as emissions of carbon dioxide and nitrogen oxides. Patent data are the most reliable measure of business performance for applied research and development activities when investigating knowledge domains or technology evolution. This is the first study on Japanese patent citation data of the green vehicle powertrains technology industry, using the social network analysis method, which emphasizes centrality estimates and community detection. This study not only elucidates the knowledge by visualizing flow patterns but also provides a precious and congregative method for verifying important patents under the International Patent Classification system and grasping the trend of the new technology industry. This study detects leading companies, not only in terms of the number of patents but also the importance of the patents. The empirical result shows that the International Patent Classification (IPC) class that starts with “B60K”, which includes hybrid electric vehicle (HEV) and battery electric vehicle (BEV), is more likely to be the technology trend in the green vehicle powertrains industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.