The motion of a tracked object often has long term underlying dependencies due to premeditated actions dictated by intent, such as destination. Revealing this intent, as early as possible, can enable advanced intelligent system functionalities for conflict/opportunity detection and automated decision making, for instance in surveillance and human computer interaction. This paper presents a novel Bayesian intent inference framework that utilises sequential Monte Carlo (SMC) methods to determine the destination of a tracked object exhibiting unknown jump behaviour. The latter can arise from the object undertaking fast maneuvers (e.g. for obstacle avoidance) and/or due to external uncontrollable environmental perturbations. Suitable intent-driven stochastic models and inference routines are introduced. The effectiveness of the proposed approach is demonstrated using synthetic and real data.
This letter presents an alternative, more consistent, construction for bridging distributions, which enables inferring the destination of a tracked object from the available partial sensory observations. Two algorithms are then introduced to sequentially estimate the probability of all possible endpoints within a generic Bayesian framework. They capture the influence of intended destination on the object's motion via suitably adapted stochastic models. Whilst the bridging approach has low training requirements, the proposed formulation can lead to more efficient predictors, e.g. around 65% less computations for certain models. Synthetic and real data is used to illustrate the effectiveness of the introduced algorithms.
In this paper, a Bayesian approach is proposed for the early detection of a drone threatening or anomalous behaviour in a surveyed region. This is in relation to revealing, as early as possible, the drone intent to either leave a geographical area where it is authorised to fly (e.g. to conduct inspection work) or reach a prohibited zone (e.g. runway protection zones at airports or a critical infrastructure site). The inference here is based on the noisy sensory observations of the target state from a non-cooperative surveillance system such as a radar. Data from Aveillant's Gamekeeper radar from a live drone trial is used to illustrate the efficacy of the introduced approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.