Reduced autophagy has been implied in chondrocyte death and osteoarthritis. Curcumin (Cur) owns therapeutic effect against osteoarthritis (OA) and enhances autophagy in various tumor cells. Whether the cartilage protection of curcumin is associated with autophagy promotion and the potential signaling pathway involved remains unclear. The present study aimed to investigate the role of autophagy in the anti-OA activity of curcumin using spontaneous and surgically induced OA mice model. Spontaneous and surgically induced OA mice model was established and treated with Cur. Articular cartilage destruction and proteoglycan loss were scored through Safranin O/Fast green staining. Apoptotic cell death was detected with TUNEL (terminal deoxynucleotidyl transferase-mediated dTUP-biotin nick end labeling assay) staining and Western blot for caspase-3, Bcl-2 associated X protein (Bax), and Bcl-2 (B-cell lymphoma-2). Light chain 3 (LC3) immunohistochemistry was used to evaluate autophagy. In vitro, primary chondrocytes were treated with interleukin 1 beta (IL-1β) and Cur. Autophagy was inhibited using 3-methyladenine. Apoptosis and autophagy were detected using flow cytometry and Western blotting assay. Curcumin treatment enhanced autophagy, reduced apoptosis, and cartilage loss in both OA models. In vitro, curcumin treatment improved IL-1β induced autophagy inhibition, cell viability decrease, and apoptosis. Mechanistically, in vivo studies suggested curcumin promoted autophagy through regulating Akt/mTOR pathway. In conclusion, our results demonstrate that curcumin-induced autophagy via Akt/mTOR signaling pathway contributes to the anti-OA effect of curcumin.
Based on the homotopy analysis method (HAM), the high accuracy frequency response curve and the stable/unstable periodic solutions of the Van der Pol-Duffing forced oscillator with the variation of the forced frequency are obtained and studied. The stability of the periodic solutions obtained is analyzed by use of Floquet theory. Furthermore, the results are validated in the light of spectral analysis and bifurcation theory.
Lactobacillus rhamnoides, a human intestinal colonizer, can act through various pathways to induce microglia/macrophages to produce cytokines and to polarize microglia/macrophages to different phenotypes to reduce the inflammatory response. In this article, we evaluated the treatment potential of the Lactobacillus rhamnoides GG conditioned medium (LGG-CM) in rat model with SCI (acute spinal cord injury), including functional, neurophysiological, and histological outcomes and the underlying neuroprotective mechanisms. In our experiment, LGG-CM (30 mg/kg) was injected directly into the injury site in rats immediately after SCI. Measured by the BBB scale (Basso, Beattie, and Bresnahan locomotor rating scale) and inclined plane test, rats in the LGG-CM-treated group showed better locomotor scores. Moreover, compared to the vehicle treatment group, LGG-CM increased the mRNA level of the M2 marker (CD206), and decreased that of the M1 marker (iNOS). Western blot assays showed that LGG-CM-treated SCI rats had a higher grayscale ratio of p65 and a lower ratio of p-IκBα/IκBα. Our study shows that local injection of LGG-CM after acute SCI can inhibit inflammatory responses and improve motor function recovery. These effects may be related with the inhibition to the NF-κB (The nuclear factor-kappa B) signal pathway which leads to M2 microglia/macrophage polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.