To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.
The photoelectrical properties of multilayer WS2 nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm2/Vs and exhibit high photosensitive characteristics with response time (τ) of <20 ms, photo-responsivity (Rλ) of 5.7 A/W and external quantum efficiency (EQE) of 1118%. In addition, charge transfer can appear between the multilayer WS2 nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH3 molecules can serve as electron donors to enhance the Rλ and EQE significantly. Under the NH3 atmosphere, the maximum Rλ and EQE can even reach 884 A/W and 1.7 × 105%, respectively. This work demonstrates that multilayer WS2 nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS2-based optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.