Conventional semiconductors such as silicon- and indium gallium arsenide (InGaAs)-based photodetectors have encountered a bottleneck in modern electronics and photonics in terms of spectral coverage, low resolution, nontransparency, nonflexibility, and complementary metal-oxide-semiconductor (CMOS) incompatibility. New emerging two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and their hybrid systems thereof, however, can circumvent all these issues benefitting from mechanically flexibility, extraordinary electronic and optical properties, as well as wafer-scale production and integration. Heterojunction-based photodiodes based on 2D materials offer ultrafast and broadband response from the visible to far-infrared range. Phototransistors based on 2D hybrid systems combined with other material platforms such as quantum dots, perovskites, organic materials, or plasmonic nanostructures yield ultrasensitive and broadband light-detection capabilities. Notably the facile integration of 2D photodetectors on silicon photonics or CMOS platforms paves the way toward high-performance, low-cost, broadband sensing and imaging modalities.
Metal halide perovskite nanocrystals (NCs) possess high photoluminescence (PL) quantum yield (PL) and color tunability. Yet, until now, it has been difficult to maintain the high PL observed in solution in spin-coated films. Here, we report a novel CsPbBr3 NCs room-temperature synthesis based on Cs acetate, which displays near-unity PL in solid-state films upon post-synthetic treatment with lead bromide. The as-synthesized NCs show a PL of 80% in spincoated films but the post-synthesis treatment further enhances the efficiency >95%. The high PL is further confirmed by the monomolecular decay of the PL (5.8 ns) indicating a nearly complete suppression of non-radiative channels. The obtained films demonstrate high stability in air and require around 3 weeks to decrease to half the initial PL value.
Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid-wave infrared photodetection applications because of their low cost, solution processing and size tunable absorption in the short wave-and midinfrared spectrum. However, the low mobility and poor photo-gain have limited the responsivity of HgTe CQDs-based photodetectors to only tens of mA/W. Here, we integrated HgTe CQDs on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ~10 6 A/W, the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2, the noise current is significantly suppressed leading to an experimentally measured specific detectivity D* of ~10 12Jones at a wavelength of 2 µm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 µm with compelling sensitivity.
The photoelectrical properties of multilayer WS2 nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm2/Vs and exhibit high photosensitive characteristics with response time (τ) of <20 ms, photo-responsivity (Rλ) of 5.7 A/W and external quantum efficiency (EQE) of 1118%. In addition, charge transfer can appear between the multilayer WS2 nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH3 molecules can serve as electron donors to enhance the Rλ and EQE significantly. Under the NH3 atmosphere, the maximum Rλ and EQE can even reach 884 A/W and 1.7 × 105%, respectively. This work demonstrates that multilayer WS2 nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS2-based optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.