Fusarium head blight (FHB) is an important disease of wheat worldwide. Severe infection can dramatically reduce grain yield and quality. Resistant cultivars have been identified from several countries. However, only a few sources of FHB resistance showed stable FHB resistance across environments and have been used as the major source of resistance in breeding programs. To diversify the wheat FHB‐resistance gene pool, new sources of FHB‐resistance are desired. Ninety‐four selected wheat landraces and cultivars, mainly from China and Japan, have been evaluated for FHB severity and deoxynivalenol (DON) content. Low DON content was correlated with resistance to the FHB symptom spread within an infected spike, but not with the resistance to FHB initial infection. Two‐thirds of the accessions were either resistant or moderately resistant to FHB. Among them, 26 highly resistant accessions mainly originated from China and Japan. Fifteen of them had less than 2 mg kg−1 DON in harvested grain, six of which showed all three types of resistance. Most of these resistant accessions lack known pedigree relations to Sumai 3, suggesting that some of them may carry genes for resistance to FHB and DON accumulation different from those in Sumai 3.
According to tundish for thin slab caster in a steel factory, 1:3 water modeling and numerical simulation were established. By measuring RTD(Residence time distribution) curves of fluid flow in tundish, real residence time, plug flow volume fraction and dead zone fraction were computed, influence of turbulence controller structure on flow mode of molten steel in tundish were studied. The results show that fluid flow in tundish can be improved, if turbulence controller has reasonable structure. A reasonable turbulence controller structure was obtained. Water modeling results agree with numerical computing results well.
Low-carbon Al2O3-C refractories were prepared using white fused corundum, α-Al2O3 powders and flake graphite as main raw materials. The critical particle sizes of corundum selected in this experiment were 0.5mm, 1mm and 2mm. The effects of corundum critical particle size on physical, mechanical and thermo-mechanical properties of low-carbon Al2O3-C refractories were investigated. The results show that the increase of critical particle size is conducive to the improvement of thermal shock resistance and fracture energy, but little effect on thermal expansion. The cold modulus of rupture after thermal shock test of samples using 0.5mm critical particle size corundum was 2.09MPa, while using 2mm critical particle size corundum was 2.98MPa. And the fracture energy increased from 265N/mm to 588N/mm when the critical particle size increased from 0.5mm to 2mm. The effects of critical particle size on apparent porosity, bulk density and modulus of rupture were insignificant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.