Chitin is the second most abundant semicrystalline polysaccharide. Like cellulose, the amorphous domains of chitin can also be removed under certain conditions such as acidolysis to give rise to crystallites in nanoscale, which are the so-called chitin nanocrystals or chitin whiskers (CHWs). CHW together with other organic nanoparticles such as cellulose whisker (CW) and starch nanocrystal show many advantages over traditional inorganic nanoparticles such as easy availability, nontoxicity, biodegradability, low density, and easy modification. They have been widely used as substitutes for inorganic nanoparticles in reinforcing polymer nanocomposites. The research and development of CHW related areas are much slower than those of CW. However, CHWs are still of strategic importance in the resource scarcity periods because of their abundant availability and special properties. During the past decade, increasing studies have been done on preparation of CHWs and their application in reinforcing polymer nanocomposites. Some other applications such as being used as feedstock to prepare chitosan nanoscaffolds have also been investigated. This Article is to review the recent development on CHW related studies.
A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.