Guided wave tomography has shown great potential for quantitative nondestructive evaluation in structural health monitoring. An improved simultaneous iterative reconstruction technique (SIRT) combining genetic algorithm (GA) is presented in order to improve image quality of guided wave tomography. The simulated reconstructed images of flawed plate and pipe using usual SIRT and improved SIRT methods have been compared quantitatively and qualitatively.
Localized flaws such as corrosions in petroleum pipelines often cause fragility, impairing integrity and shortening service lifetime of the structures. There has been much interest recently in monitoring the integrity of the pipe structures. Ultrasonic guided waves provide a highly efficient technique for rapid pipe inspection because they can be made to propagate significant distances in pitch-catch configurations. Crosshole tomographic geometry is formed in such pitch-catch configurations when transmits and receivers are respectively laid along two parallel circumferential belts around the pipe. Considering the pipe as an unwrapped plate, we investigate the adapation of the tomographic reconstruction in seismology to the guided wave inspection of a pipe. Various effects such as transducer arrangement, mesh precision, sampling interval and iterative algorithm on tomographic reconstruction are analyzed. The results provide a theoretical basis for quantitative detection of pipeline flaw using guided wave tomography.
The detection of localized defects such as cracks and corrosion in pipes using guided waves has been shown to be an effective nondestructive evaluation technique for structural health monitoring (SHM). Cross borehole tomography in seismology is introduced into the guided wave inspection of a pipe when the pipe is considered as an unwrapped plate. Guided waves propagating in pipe with a crack defect are simulated using the finite element model and the arrival times for the fastest modes are extracted and sent to the tomographic algorithm. The tomographic reconstruction is based on the simultaneous iterative reconstruction technique (SIRT). For some cylindrical shell geometries such as stacked storage tanks, access to the entire circumference of the structure could be impractical or even impossible, three different image fusion techniques are used to enhance the image equality reconstructed from the incomplete datasets. The results show that the defect is more pronounced after imaging fusion.
The working conditions of the ceramic cores are extremely harsh with the development of the preparation technology and improvement of the use conditions in the hollow blades, which brings forward high request for the preparation and properties of the ceramic cores. In this paper, silica ceramic powders were firstly coated by the silicon resin. The obtained composite powders were used to prepare the ceramic cores by the dry pressing method. And the phase compositions, microstructure and properties of the ceramic cores with the sintering temperatures were investigated. The results showed that the composite powders prepared by the coating showed good formability. The sintering temperature promoted the formation of the cristobalite. With the increase of the sintering temperature, the porosity of ceramic cores gradually decreased, the shrinkage rate and bulk-density increased. The prepared ceramic cores at 1250°C had highest bend strength of 19.25Mpa.
The effect of a 6T high magnetic field on the microstructure of directionally solidified NiAl-Cr (Mo)-Si near-eutectic alloy was investigated at the withdrawal rates of 2, 10 and 50 μm/s. The results showed that the microstructure evolved from planar eutectic to primary NiAl dendrites + cellular eutectic and then to dendritic eutectic with the increasing withdrawal rate. When the magnetic field was imposed, the well-aligned eutectic lamellae were disturbed and transformed into a wavy one at 2 μm/s. When the withdrawal rate increased to 10 μm/s, the application of the magnetic field destroyed the primary NiAl dendrite array and caused the occurrence of columnar-to-equiaxed transition (CET) of the NiAl dendrites. The volume fraction of primary dendrites also decreased. In addition, the width of intercellular/interdendritic regions decreased in cellular/dendritic eutectic structures when directionally solidified under the magnetic field. The above results should be attributed to the combined action of the thermoelectric magnetic force and the thermoelectric magnetic convection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.