Abstract. Riparian buffers can trap sediment and nutrients sourced from upper cropland, minimizing the eutrophication risk of water quality. This study aimed to investigate the distributions of soil inorganic phosphorus (Pi) forms among profile and particle-size fractions in an established riparian buffer and adjacent cropped area at the Dian lake, southwestern China. The Ca-bound fraction (62 %) was the major proportion of the Pi in the riparian soils. After 3 years' restoration, buffer rehabilitation from cropped area had a limited impact on total phosphorus (TP) concentrations, but has contributed to a change in Pi forms. In the 0-20 cm soil layer, levels of the Olsen-P, non-occluded, Ca-bound, and total Pi were lower in the buffer than the cropped area; however, the Pi distribution between the cropped area and the buffer did not differ significantly as depth increased. The clay fraction corresponded to 57 % of TP and seemed to be both a sink for highly recalcitrant Pi and a source for labile Pi. The lower concentration of Pi forms in the silt and sand particle fraction in the surface soil was observed in the buffer area, which indicated that the Pi distribution in coarse particle fraction had sensitively responded to land use changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.