Carbon nanotubes have properties potentially useful in diverse electrical and mechanical nanoscale devices and for making strong, light materials. However, carbon nanotubes are difficult to solubilize and organize into architectures necessary for many applications. In the present paper, we describe an amphiphilic alpha-helical peptide specifically designed not only to coat and solubilize carbon nanotubes, but also to control the assembly of the peptide-coated nanotubes into macromolecular structures through peptide-peptide interactions between adjacent peptide-wrapped nanotubes. The data presented herein show that the peptide folds into an amphiphilic alpha-helix in the presence of carbon nanotubes and disperses them in aqueous solution by noncovalent interactions with the nanotube surface. Electron microscopy and polarized Raman studies reveal that the peptide-coated nanotubes assemble into fibers with the nanotubes aligned along the fiber axis. Most importantly, the size and morphology of the fibers can be controlled by manipulating solution conditions that affect peptide-peptide interactions.
Amphiphilic core–shell nanoparticles containing spiropyran moieties have been prepared in aqueous media. The nanoparticles consist of hydrophilic and biocompatible poly(ethyleneimine) (PEI) chain segments, which serve as the shell, and a hydrophobic copolymer of methyl methacrylate (MMA), a spiropyran‐linked methacrylate, and a cross‐linker, which forms the core of the nanoparticles. A hydrophobic fluorescent dye based on the nitrobenzoxadiazolyl (NBD) group was introduced into the nanoparticles to form NBD–nanoparticle complexes in water. The nanoparticles not only greatly enhance the fluorescence emission of the hydrophobic dye NBD in aqueous media, probably by accommodating the dye molecules in the interface between the hydrophilic shells and the hydrophobic cores, but also modulate the fluorescence of the dye through intraparticle energy transfer. This biocompatible and photoresponsive nanoparticle complex may find applications in biological areas such as biological diagnosis, imaging, and detection. In addition, this nanoparticle approach will open up possibilities for the fluorescence modulation of other hydrophobic fluorophores in aqueous media.
The synthesis of germanium nanomaterials with welldefined surface chemistry is of considerable interest because of not only general scientific curiosity but also their vast potential in optoelectronics, energy storage, and the semiconductor industry. Herein, we report a straightforward preparative routet h a ty i e l d sh y d r i de-terminated germanium nanosheet (H-GeNS) monolayers via sonochemical exfoliation of hydride-terminated germanane flakes (HGe-flakes) derived from crystalline CaGe 2 . We subsequently show that these freestanding H-GeNSs are readily functionalized by radical-initiated and thermally induced hydrogermylation. Furthermore, we demonstrate that following functionalization the crystal structure of the GeNSs remains intact, and the introduction of organic moieties to the GeNS surfaces imparts improved thermal stability and solvent compatibility.
Background: Keratin is the primary constituent of the vertebrate epidermis and epidermal appendages, as well as the main waste product generated during poultry processing from feathers, hair, scales, nails, etc. Keratin is generally hard, stubborn and difficult to hydrolyze; however, it is also inexpensive and contains more than 85% protein. Currently, tens of millions of tons of keratin waste are produced each year worldwide; however, no effective methods for the recovery of keratin waste have been reported thus far, making such research urgent. Keratinase has been reported to be useful for keratin waste recovery; however, nearly all keratinases are unable to hydrolyze keratin after they are detached from living cell systems. This may be due to low keratinase activity and lack of synergistic factors. Results: Herein, the keratinase gene from Bacillus licheniformis BBE11-1 was successfully expressed in Bacillus subtilis WB600, allowing for improved activity of the recombinant keratinase KerZ1 to 45.14 KU/mL via promoter substitution and screening of the ribosome-binding sites. Further, real-time control of temperature, pH, dissolved oxygen, and feed strategy allowed the activity of KerZ1 to reach 426.60 KU/mL in a 15-L fermenter, accounting for a 3552-fold increase compared to the wild-type keratinase (120.1 U/mL). Most importantly, we proposed a method based on the synergistic action of keratinase KerZ1 and sodium sulfite, to hydrolyze feathers into amino acids. In specific, 100 g/L of feather waste can be successfully converted into 56.6% amino acids within 12 h, while supporting the production of dozens of bioactive peptides. Conclusions: The activity of recombinant keratinase can be greatly enhanced via transcription and translational regulation in Bacillus subtilis. The synergistic action of keratinase and sulfite can rapidly degrade feather waste and produce amino acids and polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.