Indirectly monitoring halitosis via the detection of hydrogen sulfide (H2S) biomarkers using gas sensors is a newly emerging technique. However, such H2S sensors are required with critically high selectivity and sensitivity, as well as a ppb-level detection limit, which remains technologically challenging. To address such issues, here, we have developed highly sensitive and selective H2S sensors with NiO/WO3 nanoparticles (NPs), which have been synthesized by firstly hydrolyzing WO3 NPs and subsequently decorating with NiO NPs in a hydrothermal process. Theoretically, the NiO/WO3 NPs assist in forming a thicker electron depletion layer, adsorbing more oxygen species O2 – to oxidize H2S and finally release more electrons. Beneficially, 2.1 wt % NiO/WO3 NPs show high sensitivity to H2S (R a/R g = 15031 ± 1370 @ 10 ppm, 100 °C), which is 42.6-fold higher than that of the pristine WO3 NPs (R a/R g = 353 ± 5.6 @ 10 ppm, 100 °C). Further, the H2S sensor shows ppb-level detection limit (R a/R g = 4.95 ± 2.9 @ 0.05 ppm, 100 °C) and high selectivity. Practically, NiO/WO3 NP sensor prototype has been employed to detect the simulated exhaled halitosis compared with that of gas chromatography, revealing a close concentration of H2S. Our investigation offers an experimental base in future intelligent medical applications.
Ferroelectric (FE) materials are thought to be promising materials for self-powered ultraviolet (UV) photodetector applications because of their photovoltaic effects. However, FE-based photodetectors exhibited poor performance because of the weak photovoltaic effect of FE depolarization field (E dp) on the separation of photo-generated carriers. In this work, self-powered photodetectors based on both E dp and built-in electric field at the p-n junction (E p‑n) were designed to obtain enhanced device performance. A NiO/Pb0.95La0.05Zr0.54Ti0.46O3 (PLZT) heterojunction-based device is constructed to take advantage of energy level alignments that favor electron extraction. The device exhibits a tunable performance upon varying the polarization direction of PLZT. The NiO/PLZT heterojunction-based device with the PLZT layer in the poling down state shows a higher responsivity [R = (1.8 ± 0.12) × 10–4 A/W] and detectivity [D* = (3.69 ± 0.2) × 109 Jones], a faster response speed (τr = 0.34 ± 0.03 s, τd = 0.36 ± 0.02 s), and a lower dark current [I dark = (1.3 ± 0.19) × 10–12 A] under zero bias than the PLZT-based device because of the synergistic effects of E dp and E p‑n. Moreover, under weak-light illumination (0.1 mW/cm2), it exhibits even higher R [(6.3 ± 1.2) × 10–4 A/W] and D* [(1.29 ± 0.26) × 1010 Jones] values, which surpass those of most previously reported FE-based self-powered photodetectors. Our work emphasizes the role of the coupling effect between E p‑n and E dp in the photovoltaic process of NiO/PLZT heterojunction-based devices and provides an effective way to promote the self-powered UV photodetector applications.
MoS2 has attracted attention as a promising hydrogen evolution reaction (HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS2 nanosheet arrays (h-rGO@MoS2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas (144.9 m2 g−1, ca. 4.6-times that of pristine MoS2), the h-rGO@MoS2 architecture shows a high specific capacitance (238 F g−1 at a current density of 0.5 A g−1), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures, which may serve both as efficient HER catalysts and supercapacitor electrodes. Electronic supplementary materialThe online version of this article (10.1007/s40820-018-0215-3) contains supplementary material, which is available to authorized users.
Different from classical semiconductor photovoltaic devices, for ferroelectric photovoltaic devices, the open-circuit voltage (Voc) can be four and even more orders of magnitude larger than the band gap of the ferroelectric, and the built-in electric field arising from the remnant polarization of the ferroelectric is throughout the bulk region, which is good for obtaining giant power conversion efficiency. Among ferroelectric materials, BiFeO3 with remnant polarization of as high as-100 μC/cm 2 has the narrowest direct band gap (-2.7 eV). These indicate that high power conversion efficiency may be obtained in BiFeO3-based photovoltaic devices. Also, some significant research results about photovoltaic effects of BiFeO3 materials have been recently acquired. In order to better promote the development of BiFeO3-based photovoltaic devices, in this paper, we present a comprehensive review on the latest research progress in photovoltaic effects of BiFeO3 materials with different kinds of topography, including bulk, thin film, and nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.