Loose layers are the locus of human activities. The high-quality 3D modeling of loose layers has essential research significance and applicability in engineering geology, hydraulic and hydroelectric engineering, and urban underground space design. To address the shortcomings of traditional 3D loose-layer modeling based on borehole data, such as the lack of bedrock surface constraints, simple strata pinch-out processing, and the higher fitting error of the strata surface, a 3D loose-layer modeling method based on the stratum development law is proposed. The method mainly uses three different virtual boreholes, bedrock-boundary virtual boreholes, pinch-out virtual boreholes, and densified virtual boreholes, to control the stratigraphic distribution. Case studies demonstrate the effectiveness of this 3D loose-layer modeling method in the Qinhuai District of Nanjing and Hangkonggang District of Zhengzhou. Compared to the previous methods that interpolated stratigraphic surfaces with elevation information, the method proposed in this article interpolates the stratum thickness based on stacking, which could improve the interpolation accuracy. In the area where the loose layers and exposed bedrock are alternately distributed, stratigraphic thickness errors’ mean and standard deviation decreased by 2.11 and 2.13 m. In the pure loose-layer area, they dropped by 0.96 and 0.33 m. In addition, the proposed approach allows us to infer the different stratigraphic distribution patterns accurately and complete 3D loose-layer model construction with higher accuracy and a good visualization effect.
Cross sections carry information on the spatial distribution of rock strata and the development of geological structures, and it is an important data source for three-dimensional (3D) geological modeling. However, the interpretation and mapping of geological structures in sections by means of manual interpretation are inefficient and costly, and the performance varies greatly with the experts’ ability and experience. The objective of this article is to develop an automatic recognition and mapping method for folds in cross sections. This method mainly includes identifying folds based on stratigraphic sequence characteristics (symmetrical and repetitive), classifying fold types based on geometric attributes of folds (interval scheduling, strike, and section morphology), optimizing strata based on the superposition principle and area conservation principle, and constructing the polygon features of folds. Based on experiments in the Parallel Fold Belt of Eastern Sichuan and the central Appalachian fold-thrust belt in the Appalachian Mountains, the method presented in this article can effectively be used for automatic recognition and high-quality mapping of folds in the cross sections. The method provides a good source of geological cross-sectional data for the 3D modeling of geologic bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.