BackgroundImmune and inflammatory responses occurring in the spinal cord play a pivotal role in the progression of radicular pain caused by intervertebral disk herniation. Interleukin-33 (IL-33) orchestrates inflammatory responses in a wide range of inflammatory and autoimmune disorders of the nervous system. Thus, the purpose of this study is to investigate the expression of IL-33 and its receptor ST2 in the dorsal spinal cord and to elucidate whether the inhibition of spinal IL-33 expression significantly attenuates pain-related behaviors in rat models of noncompressive lumbar disc herniation.MethodsLentiviral vectors encoding short hairpin RNAs that target IL-33 (LV-shIL-33) were constructed for gene silencing. Rat models of noncompressive lumber disk herniation were established, and the spines of rats were injected with LV-shIL-33 (5 or 10 μl) on the first day after the operation. Mechanical thresholds were evaluated during an observation period of 21 days. Moreover, the expression levels of spinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2) and the activation of the mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated to gain insight into the mechanisms related to the contribution of IL-33/ST2 signaling to radicular pain.ResultsThe application of nucleus pulposus (NP) to the dorsal root ganglion (DRG) induced an increase in IL-33 and ST2 expression in the spinal cord, mainly in the dorsal horn neurons, astrocytes, and oligodendrocytes. Spinally delivered LV-shIL-33 knocked down the expression of IL-33 and markedly attenuated mechanical allodynia. In addition, spinal administration of LV-shIL-33 reduced the overexpression of spinal IL-1β, TNF-α, and COX-2 and attenuated the activation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and NF-κB/p65 but not p38.ConclusionsThis study indicates that spinal IL-33/ST2 signaling plays an important role in the development and progression of radicular pain in rat models of noncompressive lumber disk herniation. Thus, the inhibition of spinal IL-33 expression may provide a potential treatment to manage radicular pain caused by intervertebral disk herniation.
Objective. It is known that noxious stimuli from inflamed tissue may increase the excitability of spinal dorsal horn neurons (a process known as central sensitization), which can signal back and contribute to peripheral inflammation. However, the underlying mechanisms have yet to be fully defined. A number of recent studies have indicated that spinal NF-B/p65 is involved in central sensitization, as well as pain-related behavior. Thus, the aim of this study was to determine whether NF-B/p65 can facilitate a peripheral inflammatory response in rat adjuvant-induced arthritis (AIA).Methods. Lentiviral vectors encoding short hairpin RNAs that target NF-B/p65 (LV-shNF-B/p65) were constructed for gene silencing. The spines of rats with AIA were injected with LV-shNF-B/p65 on day 3 or day 10 after treatment with Freund's complete adjuvant (CFA). During an observation period of 20 days, pain-related behavior, paw swelling, and joint histopathologic changes were evaluated. Moreover, the expression levels of spinal tumor necrosis factor ␣ (TNF␣), interleukin-1 (IL-1), and cyclooxygenase 2 (COX-2) were assessed on day 14 after CFA treatment. Conclusion. These findings indicate that spinal NF-B/p65 plays an important role in the initiation and development of both peripheral inflammation and hyperalgesia. Thus, inhibition of spinal NF-B/p65 expression may provide a potential treatment to manage painful inflammatory disorders.
Results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.