Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis.
Renal fibrosis induced by urinary tract obstruction is a common clinical occurrence; however, effective treatment is lacking, and a deeper understanding of the mechanism of renal fibrosis is needed. Previous studies have revealed that miR‐21 impacts liver and lung fibrosis progression by activating the SPRY1/ERK/NF‐kB signalling pathway. However, whether miR‐21 mediates obstructive renal fibrosis through the same signalling pathway has not been determined. Additionally, studies have shown that N6‐methyladenosine (m6A) modification‐dependent primary microRNA (pri‐microRNA) processing is essential for maturation of microRNAs, but its role in the maturation of miR‐21 in obstructive renal fibrosis has not yet been investigated in detail. To address these issues, we employed a mouse model of unilateral ureteral obstruction (UUO) in which the left ureters were ligated for 3, 7 and 14 days to simulate the fibrotic process. In vitro, human renal proximal tubular epithelial (HK‐2) cells were transfected with plasmids containing the corresponding sequence of METTL3, miR‐21‐5p mimic or miR‐21‐5p inhibitor. We found that the levels of miR‐21‐5p and m6A modification in the UUO model groups increased significantly, and as predicted, the SPRY1/ERK/NF‐kB pathway was activated by miR‐21‐5p, confirming that miR‐21‐5p plays an important role in obstructive renal fibrosis by enhancing inflammation. METTL3 was found to play a major catalytic role in m6A modification in UUO mice and drove obstructive renal fibrosis development by promoting miR‐21‐5p maturation. Our research is the first to demonstrate the role of the METTL3‐m6A‐miR‐21‐5p‐SPRY1/ERK/NF‐kB axis in obstructive renal fibrosis and provides a deeper understanding of renal fibrosis.
Bisphenol A (BPA) acts as xenoestrogen and has a great impact on disorders of human reproductive system. However, the mechanism through which BPA can affect human testicular function remains to be identified. GPR30 is a novel membrane estrogen receptor with high-affinity and low-capacity binding to estrogens. We demonstrated that estrogen receptor α (ERα), estrogen receptor β (ERβ) as well as GPR30 are expressed in mouse spermatocyte-derived GC-2 cells using Real-time PCR. We treated the cells with different doses of BPA and found that even low doses of BPA can inhibit GC-2 cell growth using MTT assay. To make sure which receptor is responsible for the biological function of BPA, we used ER down-regulator ICI and indicated that BPA could bind to GPR30. We also observed that BPA was able to induce Erk1/2 phosphorylation in GC-2 cells and proved that this process was mediated by GPR30–related EGFR-MAPK pathway using western blot. By Real-time PCR, we found that the expression of c-Fos was up-regulated and Cyclin D1 gene was down-regulated, in the presence of BPA and ICI. The results of MTT assay, comet assay and flow cytometry indicated that the activation of GPR30 induced by BPA inhibited the cell growth and induced cell apoptosis and ICI, GPR30 siRNA, EGFR inhibitor (AG), and MAPK (PD) inhibitor could partially reverse this effect. Immunohistochemistry on the testis of BPA –damaged mice showed that BPA induced spermatocyte apoptosis without affecting the seminiferous tubules and spermatocyte. In conclusion, BPA triggered spermatocyte apoptosis via GPR30.
Further animal and human studies will increase our understanding of bladder development leading toward mature function. UDS are still important in providing information for early bladder dysfunction in newborns and infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.