The plasmonic properties of sphere-like bcc Na nanoclusters ranging from Na15 to Na331 have been studied by real-time time-dependent local density approximation calculations. The optical absorption spectrum, density response function and static polarizability are evaluated. It is shown that the effect of the ionic background (ionic species and lattice) of the clusters accounts for the remaining discrepancy in the principal (surface plasmon) absorption peak energy between the experiments and previous calculations based on a jellium background model. The ionic background effect also pushes the critical cluster size where the maximum width of the principal peak occurs from Na40 predicted by the previous jellium model calculations to Na65. In the volume mode clusters (Na27, Na51, Na65, Na89 and Na113) in which the density response function is dominated by an intense volume mode, a multiple absorption peak structure also appears next to the principal peak. In contrast, the surface mode clusters of greater size (Na169, Na229, Na283 and Na331) exhibit a smoother and narrower principal absorption peak because their surface plasmon energy is located well within that of the unperturbed electron-hole transitions, and their density responses already bear resemblance to that of classical Mie theory. Moreover, it is found that the volume plasmon that exist only in finite size particles, gives rise to the long absorption tail in the UV region. This volume plasmon manifests itself in the absorption spectrum even for clusters as large as Na331 with an effective diameter of ∼3.0 nm.
The mechanistic understanding of structure–function relationships in biological systems heavily relies on imaging. While fluorescence microscopy allows the study of specific proteins following their labeling with fluorophores, electron microscopy enables holistic ultrastructural analysis based on differences in electron density. To identify specific proteins in electron microscopy, immunogold labeling has become the method of choice. However, the distinction of immunogold-based protein labels from naturally occurring electron dense granules and the identification of several different proteins in the same sample remain challenging. Correlative cathodoluminescence electron microscopy (CCLEM) bioimaging has recently been suggested to provide an attractive alternative based on labels emitting characteristic light. While luminescence excitation by an electron beam enables subdiffraction imaging, structural damage to the sample by high-energy electrons has been identified as a potential obstacle. Here, we investigate the feasibility of various commonly used luminescent labels for CCLEM bioimaging. We demonstrate that organic fluorophores and semiconductor quantum dots suffer from a considerable loss of emission intensity, even when using moderate beam voltages (2 kV) and currents (0.4 nA). Rare-earth element-doped nanocrystals, in particular Y2O3:Tb3+ and YVO4:Bi3+,Eu3+ nanoparticles with green and orange-red emission, respectively, feature remarkably high brightness and stability in the CCLEM bioimaging setting. We further illustrate how these nanocrystals can be readily differentiated from morphologically similar naturally occurring dense granules based on optical emission, making them attractive nanoparticle core materials for molecular labeling and (multi)color CCLEM.
PurposeDifferentiation of high-grade gliomas and solitary brain metastases is an important clinical issue because the treatment strategies differ greatly. Our study aimed to investigate the potential value of diffusion tensor imaging (DTI) in differentiating high-grade gliomas from brain metastases using a meta-analytic approach.Materials and MethodsWe searched Pubmed, Embase and the Cochrane Library for relevant articles published in English. Studies that both investigated high-grade gliomas and brain metastases using DTI were included. Random effect model was used to compare fractional anisotropy (FA) and mean diffusivity (MD) values in the two tumor entities.ResultsNine studies were included into the meta-analysis. In the peritumoral region, compared with brain metastases, high-grade gliomas had a significant increase of FA (SMD = 0.47; 95% CI, 0.22–0.71; P<0.01) and a significant decrease of MD (SMD = −1.49; 95% CI, −1.91 to −1.06; P<0.01). However, in the intratumoral area, no significant change in FA (SMD = 0.16; 95% CI, −0.49 to 0.82; P = 0.73) or MD (SMD = 0.34; 95% CI, −0.91 to 1.60; P = 0.59) was detected between gliomas and metastases.ConclusionsHigh-grade gliomas may be distinguished from brain metastases by comparing the peritumoral FA and MD values. DTI appears to be a promising tool in diagnosing solitary intracranial lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.