The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.
Prolamins are seed storage proteins in cereals and represent an important source of essential amino acids for feed and food. Genes encoding these proteins resulted from dispersed and tandem amplification. While previous studies have concentrated on protein sequences from different grass species, we now can add a new perspective to their relationships by asking how their genes are shared by ancestry and copied in different lineages of the same family of species. These differences are derived from alignment of chromosomal regions, where collinearity is used to identify prolamin genes in syntenic positions, also called orthologous gene copies. New or paralogous gene copies are inserted in tandem or new locations of the same genome. More importantly, one can detect the loss of older genes. We analyzed chromosomal intervals containing prolamin genes from rice, sorghum, wheat, barley, and Brachypodium, representing different subfamilies of the Poaceae. The Poaceae commonly known as the grasses includes three major subfamilies, the Ehrhartoideae (rice), Pooideae (wheat, barley, and Brachypodium), and Panicoideae (millets, maize, sorghum, and switchgrass). Based on chromosomal position and sequence divergence, it becomes possible to infer the order of gene amplification events. Furthermore, the loss of older genes in different subfamilies seems to permit a faster pace of divergence of paralogous genes. Change in protein structure affects their physical properties, subcellular location, and amino acid composition. On the other hand, regulatory sequence elements and corresponding transcriptional activators of new gene copies are more conserved than coding sequences, consistent with the tissue-specific expression of these genes.
Zea mays, commonly known as corn, is perhaps the most greatly produced crop in terms of tonnage and a major food, feed, and biofuel resource. Here we analyzed its prolamin gene family, encoding the major seed storage proteins, as a model for gene evolution by syntenic alignments with sorghum and rice, two genomes that have been sequenced recently. Because a high-density gene map has been constructed for maize inbred B73, all prolamin gene copies can be identified in their chromosomal context. Alignment of respective chromosomal regions of these species via conserved genes allow us to identify the pedigree of prolamin gene copies in space and time. Its youngest and largest gene family, the alpha prolamins, arose about 22-26 million years ago (Mya) after the split of the Panicoideae (including maize, sorghum, and millet) from the Pooideae (including wheat, barley, and oats) and Oryzoideae (rice). The first dispersal of alpha prolamin gene copies occurred before the split of the progenitors of maize and sorghum about 11.9 Mya. One of the two progenitors of maize gained a new alpha zein locus, absent in the other lineage, to form a nonduplicated locus in maize after allotetraplodization about 4.8 Mya. But dispersed copies gave rise to tandem duplications through uneven expansion and gene silencing of this gene family in maize and sorghum, possibly because of maize's greater recombination and mutation rates resulting from its diploidization process. Interestingly, new gene loci in maize represent junctions of ancestral chromosome fragments and sites of new centromeres in sorghum and rice.allotetraploidy ͉ centromere formation ͉ chromosome structure ͉ comparative genomics
Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery.
Background Remimazolam tosilate (HR7056, RT), a novel ultrashort-acting benzodiazepine, can be used for procedural sedation and general anaesthesia. However, few studies have focused on the sedative effect of RT during gastrointestinal endoscopy in elderly patients. The purpose of this study is to compare the sedative effect of RT and propofol for gastrointestinal endoscopy in elderly patients. Methods A total of 82 patients aged ≥65 years with an American Society of Anaesthesiologists (ASA) grade I-II and a body mass index (BMI) of 18.0 to 30.0 kg/m2 who were scheduled for gastrointestinal endoscopy from Jan 2021 to Aug 2021 were selected and randomly divided into a RT group and a propofol group. Alfentanil 5 μg/kg was used for analgesia in both groups. The RT group was given remimazolam tosilate 0.15 mg/kg with supplemental doses of 0.05 mg/kg as need, while the propofol group was given propofol 1.5 mg/kg with supplemental doses of 0.5 mg/kg. The supplemental doses were determined by the modified observational alertness/sedation assessment (MOAA/S) score and the patients’ body movements. Sedative effects, such as the time to loss of consciousness (LOC) (MOAA/S score ≤ 1), successful sedation in one dose, number of supplemental doses after successful induction, and recovery time, were evaluated. Sedation-related side effects, such as injection pain, haemodynamic events and respiratory depression, were also noted. Postoperative nausea and vomiting (PONV), visual analogue scale (VAS) scores at rest, remedial analgesics, and dizziness or headache were recorded. In addition, patients’ satisfaction and physician’s satisfaction of the procedure were compared between the two groups. Results Data from 77 patients were analysed. The success rate of sedation in both groups was 100%. The time to LOC (MOAA/S score ≤ 1) in the RT group was longer than that in the propofol group (20.7 ± 6.1s vs. 13.2 ± 5.2s, P < 0.001). There were fewer patients in the RT group reporting injection pain than that in the propofol group (0/39 vs. 5/38, P = 0.025). Haemodynamic events and respiratory depression in the RT group were less frequent than those in the propofol group ((6/39 vs. 17/38, P = 0.005), (2/39 vs. 9/38, P = 0.026), respectively). The number of supplemental doses after successful induction in the RT group was greater than that in the propofol group (4/9/11/13/1/1 vs. 8/4/18/6/2/0 requiring 0, 1, 2, 3, 4 or 5 supplemental doses, P = 0.014). The characteristics of the patients enrolled, postoperative parameters of the patients, and patients’ and physician’s satisfaction of the procedure were comparable in the two groups. Conclusions Compared with propofol, RT can be safely and effectively used for gastrointestinal endoscopy sedation in elderly patients, and the incidence of sedation-related adverse reactions, especially haemodynamic events and respiratory depression, is lower. When RT is used, the number of supplemental doses after successful induction may increase slightly. Trial registration Chictr.org.cn ChiCTR2000040498. Retrospectively registered (date of registration: December 1, 2020).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.