Replacement of Met31 by (N-Me)Nle in CCK8 or CCK4 has been shown to improve the affinity and selectivity for CCK-B receptors. In order to obtain molecules with enhanced bioavailability, two novel series of protected tetrapeptides of the general formula Boc-Trp30-X-Asp-Y33 have been developed. Introduction of (N-Me)Nle and the bulky, aromatic naphthylalaninamide (Nal-NH2) in positions X and Y, respectively, does not greatly modify the affinity for guinea pig brain CCK-B receptors. In contrast, incorporation of hindering N-methyl amino acids such as (N-Me)Phe, (N-Me)Phg, or (N-Me)Chg, but not their non-methylated counterparts, in position X induced a large decrease in affinity for the CCK-B binding sites. Among the various peptides synthesized, Boc-[(N-Me)Nle31,1Nal-NH2(33)]CCK4 (2) (KI = 2.8 nM), Boc-[Phg31,1Nal-NH2(33)]CCK4 (15) (KI = 14 nM), and Boc-[Phg31,1Nal-N(CH3)2(33)]CCK4 (17) (KI = 39 nM) displayed good affinities for brain CCK-B receptors and had good selectivity ratios. These pseudopeptides, in which the presence of unnatural and hydrophobic residues is expected to improve their penetration of the central nervous system, were shown to be very resistant to brain peptidases. Interestingly, whereas compounds 2 and 15 proved to be full agonists for rat hippocampal CCK-B receptors when measured in an electrophysiological assay, compound 17 behaved as a potent antagonist in the same test and displayed a good affinity in rat brain KI(CCK-B) = 51 nM as compared to the Merck antagonist L365,260,KI(CCK-B) = 12 nM. This illustrates a simple means to obtain CCK-B antagonists and suggests that the free, CONH2 group plays a critical role in the recognition of the agonist state of brain CCK-B receptors.
Antagonists of cholecystokinin-B (CCK-B) receptors have been shown to alleviate CCK4-induced panic attacks in humans and to potentiate opioid effects in animals. The clinical use of these compounds is critically dependent on their ability to cross the blood-brain barrier. In order to improve this property, new, peptoid-derived CCK-B antagonists, endowed with high affinity, selectivity, and increased lipophilicity have been developed. The affinity and selectivity of these compounds have been characterized in vitro and in vivo using guinea pig, rat, and mouse. Most of these compounds proved to be selective for the CCK-B receptor, the most potent analog, N-[N-[(2-adamantyloxy)carbonyl]-D-alpha- methyltryptophanyl]-N-[2-(4-chlorophenyl)ethyl]glycine (26A), having a Ki value of 6.1 nM for guinea pig cortex membranes in vitro and a good selectivity ratio (Ki CCK-A/Ki CCK-B = 174). Furthermore, the in vivo affinity of 26A for mouse brain CCK-B receptors, following intracerebroventricular injection at different concentrations, was found to be 10 nmol. Using competition experiments with the specific CCK-B ligand [3H]pBC 264, compound 26A was shown to cross the blood-brain barrier (0.2%) after intraperitoneal administration in mice. This compound is therefore an interesting pharmacological tool to further elucidate the physiopathological role of endogenous CCK.
The tetrapeptide Boc-Trp-(N-Me)Nle-Asp-Phe-NH2 is a potent CCK-B agonist. Replacement in this analogue of the norleucine residue by a phenylalanine, to yield Boc-Trp-(N-Me) Phe-Asp-Phe-NH2, led to a 740-fold decrease in affinity whereas the same decrease in affinity was not observed in their nonmethylated counterparts. In order to ascertain the conformational preferences of these two N-methylated tetrapeptides, a study by two-dimensional (2D) nmr spectroscopy and molecular modeling was undertaken. The solution conformation of the two peptides was examined by 1H-nmr in a d6-DMSO/H2O (80:20) mixture. A cis-trans equilibrium, induced by N-methylation, was observed for both analogues, and the proton spectra of the two rotamers were fully characterized in each case. 1H-1H distance constraints, derived from 2D nuclear Overhauser effect spectroscopy and rotating frame nuclear Overhauser effect spectroscopy experiments, were used as inputs for subsequent restrained molecular dynamics simulations. Comparisons of the nmr and molecular modeling data point toward distinct conformational preferences for these two peptides with an opposite spatial orientation of the Trp residue, and could explain the large difference in their biological activities. Furthermore, the tridimensional structure of Boc-Trp-(N-Me)Nle-Asp-Phe-NH2 could serve as a model for the design of nonpeptide CCK-B agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.