Fully convolutional networks (FCNs) have been widely applied for dense classification tasks such as semantic segmentation. As a large number of works based on FCNs are proposed, various semantic segmentation models have been improved significantly. However, duplicated upsampling and deconvolution operations in the FCNs will lead to information loss in semantic segmentation tasks and to problems such as ignoring the relationship between pixels and pixels and the lack of spatial consistency. In this study, we propose a parallel fully convolutional neural network that integrates holistically-nested edge detection (HED) network to capture image edge information, improving semantic segmentation performance. We carry out comprehensive experiments and achieve a better result on the PASCAL VOC 2012 , PASCAL-Context and Cityscapes, comparing the results with some existing semantic segmentation methods.INDEX TERMS Fully convolutional networks, edge detection, edge refinement, semantic segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.