To extend the scope of high frequency (HF) radio oceanography, a new HF radar model, named shore-to-air bistatic HF radar, has been proposed for ocean observations. To explore this model, the first-order scattering coefficient and the second-order electromagnetic scattering coefficient for shore-to-air bistatic HF radar are derived using the perturbation method. In conjunction with the contribution of the hydrodynamic component, the second-order scattering coefficient is derived. Based on the derived scattering coefficients, we analyzed the simulated echo Doppler spectra for various scattering angles and azimuthal angles, operation frequencies, wind speeds, and directions of wind, which may provide the guideline on the extraction of sea state information for shore-to-air bistatic HF radar. The singularities in the simulated echo Doppler spectra are discussed using the normalized constant Doppler frequency contours. In addition, the scattering coefficients of shore-to-air bistatic HF radar are compared with that of monostatic HF radar and land-based bistatic HF radar. The results verify the correctness of the proposed scattering coefficients. The model of shore-to-air bistatic HF radar is effective for ocean observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.