The CO 2 gasification properties and kinetics of biomass chars including four kinds of herbaceous residues and two kinds of wooden residues have been studied by the method of isotherm-gravimetric analysis. In addition, the chemical components as well as physical structures of six chars were systematically tested. Results show that gasification reactivity of herbaceous residue char were better than that of wooden residue char. It was found that gasification reactivities of char were mostly determined by its carbonaceous structure. Four kinetic models were applied to describe the gasification behavior of biomass chars: the volumetric model(VM), the grain model(GM), the random pore model(RPM) and the modified random pore model(MRPM). It was found that the RPM and MRPM model were better for describing the reactivity of different chars. However, for the gasification process in which the peak gasification rate appears in high conversion range, the MRPM performs better. At the same time, a marked compensation effect was also presented between the activation energy and pre-exponential factor when the Arrhenius law was used to describe the temperature dependence of gasification rate of char.
Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.
Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X(1)Σ(+), a(3)Π, and A(1)Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10(-3), R02 = 6.35 × 10(-4), and R03 = 2.05 × 10(-6)) for the A(1)Π1(ν(')=0)→X(1)Σ0(+) (+)(ν(″)=0) transition are determined. A sufficiently radiative lifetime τ (A(1)Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a(3)Π0(+) →X(1)Σ0(+) (+), a(3)Π1→X(1)Σ0(+) (+), A(1)Π1 → a(3)Π0(+) , and A(1)Π1 → a(3)Π1 transitions are particularly small (∼10 s(-1)-650 s(-1)). The calculated vibrational branching loss ratio to the intermediate a(3)Π0(+) and a(3)Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.