This paper centers on the expansion from elite to mass higher education in China and its effects on China's economic development. These effects are twofold, including both the immediate influence of expanded enrollment in higher education on China's economy, and the human capital accumulation for the long term. The paper first provides a description of key changes in the Chinese higher education system during this radical expansion. This is followed by an analysis of the relation between higher education expansion and economic development both in terms of short and long term goals, using the Keynesian economic principle and human capital theory. The analysis found that it is premature to conclude whether the expansion policy has revitalized the economy or not in the short term. China is achieving its long term goal of accumulating human capital; however, the mounting unemployment of postsecondary graduates is jeopardizing students' private returns.
Stock price prediction is a crucial element in financial trading as it allows traders to make informed decisions about buying, selling, and holding stocks. Accurate predictions of future stock prices can help traders optimize their trading strategies and maximize their profits. In this paper, we introduce a neural network-based stock return prediction method, the Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN) model, which combines the Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM) Cells. Specifically, the GCN is used to capture complex topological structures and spatial dependence from value chain data, while the LSTM captures temporal dependence and dynamic changes in stock returns data.We evaluated the LSTM-GCN model on two datasets consisting of constituents of Eurostoxx 600 and S&P 500. Our experiments demonstrate that the LSTM-GCN model can capture additional information from value chain data that are not fully reflected in price data, and the predictions outperform baseline models on both datasets.
Purpose The purpose of this study is that on the basis of the competitive edge theory, source mechanism and evaluation approaches of industrial cluster competitiveness, combined with international trends in the automobile industry and the features of Chinese automobile industrial cluster development, an evaluation index system about cluster competitiveness of auto industry is built with comprehensive consideration of factors such as cluster development environment, external scale effect and internal competitiveness from the perspective of value chain of automobile industry. Design/methodology/approach An evaluation index system for automobile industrial cluster competitiveness was realized by integrating current strengths and future growth capacities with multidimensional, dynamic and comprehensive characteristics, which included 3 second-level, 10 third-level and 16 fourth-level indices. In the light of evaluation methods, a group intelligence optimization algorithm – (cuckoo search) – and traditional methods of complex decision-making system – analytic hierarchy process (AHP) – were combined to propose the cuckoo-AHP evaluation method. It was applied for the calculation and optimization of weight values in an automobile industrial cluster competitiveness evaluation index for the purpose of obtaining better scientific and more reliable results. Findings The research might further enrich the evaluation theory of automobile industrial cluster competitiveness and also can be useful for showing how traditional evaluation methods can be combined with intelligent algorithms to carry out better automobile industrial cluster competitiveness evaluations. In addition, studies of channels for kick-starting Chinese auto industrial cluster competitiveness are expected to provide references for how to enhance the cluster competitiveness of the Chinese automobile industry. Practical implications Changsha and Liuzhou, the Guangxi automobile industrial clusters as the two empirical analysis objects selected for this paper, are geographically adjacent to each other. The automobile industries of the two cities are local pillar industries with the strong support of the local government. Both clusters have their own advantages and weak points with different characteristics of cluster development, and they enjoy a representative significance amongst China’s numerous auto industrial clusters that are taking shape. Comparative analysis of both clusters serves as a good reference for the objective evaluation of the competitiveness of Chinese automobile clusters in terms of their real and practical developments and in respect of the success of reasonable scientific and industrial cluster policies. Originality/value Multidimensional, dynamic, integrated evaluation index systems are constructed around automobile industrial cluster competitiveness, which has taken into account developments in current strengths and future growth capacity. The cuckoo-AHP evaluation method has been formed by combining the traditional decision-making method known as AHP with a new meta-heuristic optimization algorithm called “cuckoo search”. Both have been used in evaluations of automobile industrial cluster competitiveness in Liuzhou and Changsha, which will be beneficial for enriching automobile industrial cluster competitiveness evaluation theory and new evaluation methods that will enable better evaluations of automobile industrial cluster competitiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.