BackgroundT helper 17 (Th17) cells have proven to be crucial in the pathogenesis of neutrophils-dominant asthma. Hypoxia inducible factor-1α (HIF-1α) is involved in allergic responses in asthma. Our previous studies indicated that Methtyl-CpG binding domain protein 2 (MBD2) expression was increased in asthma patients. The aim of the present study is to understand how MBD2 interacts with HIF-1α to regulate Th17 cell differentiation and IL-17 expression in neutrophils-dominant asthma.MethodsA neutrophils-dominant asthma mouse model was established using female C57BL/6 mice to investigate Th17 cell differentiation and MBD2 and HIF-1α expression regulation using flow cytometry, western blot or qRT-PCR. MBD2 and HIF-1α genes were silenced or overexpressed through lentiviral transduction to explore the roles of MBD2 in Th17 cell differentiation and IL-17 release in neutrophils-dominant asthma.ResultsA neutrophilic inflammatory asthma phenotype model was established successfully. This was characterized by airway hyperresponsiveness (AHR), increased BALF neutrophil granulocytes, activated Th17 cell differentiation, and high IL-17 levels. MBD2 and HIF-1α expression were significantly increased in the lung and spleen cells of mice with neutrophils-dominant asthma. Through overexpression or silencing of MBD2 and HIF-1α genes, we have concluded that MBD2 and HIF-1α regulate Th17 cell differentiation and IL-17 secretion. Moreover, MBD2 was also found to regulate HIF-1α expression.ConclusionsOur findings have uncovered new roles for MBD2 and HIF-1α, and provide novel insights into the epigenetic regulation of neutrophils-dominant asthma.Electronic supplementary materialThe online version of this article (10.1186/s12950-018-0191-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.