Accurate electrical load forecasting is of great significance to help power companies in better scheduling and efficient management. Since high levels of uncertainties exist in the load time series, it is a challenging task to make accurate short-term load forecast (STLF). In recent years, deep learning approaches provide better performance to predict electrical load in real world cases. The convolutional neural network (CNN) can extract the local trend and capture the same pattern, and the long short-term memory (LSTM) is proposed to learn the relationship in time steps. In this paper, a new deep neural network framework that integrates the hidden feature of the CNN model and the LSTM model is proposed to improve the forecasting accuracy. The proposed model was tested in a real-world case, and detailed experiments were conducted to validate its practicality and stability. The forecasting performance of the proposed model was compared with the LSTM model and the CNN model. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) were used as the evaluation indexes. The experimental results demonstrate that the proposed model can achieve better and stable performance in STLF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.