Purpose
Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs).
Design/methodology/approach
The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed.
Findings
PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch.
Originality/value
This paper provides a detailed and timely review of the rapidly growing research in PSST.
The abradable coating is one of the most important coatings for improving the efficiency of aeroengine. To improve the durability of Sc2O3-Y2O3-ZrO2-CaF2-PHB abradable coating under the conditions of high temperature thermal shock, the femtosecond laser processing technology is proposed to fabricate the texture on the surface of SiCf/SiC composites to improve the coating/matrix contact area. The environmental barrier coating (EBC) was prepared by vacuum plasma spraying (VPS) equipment on SiCf/SiC ceramic matrix composites to avoid water-oxygen corrosion. And the abradable coating was prepared by air plasma spraying (APS) equipment on the EBC. The thermal shock test of the abradable coating at (1,250 ± 50)°C was established in the simulated gas environment of the oxygen-propane flame, and the variation of interface stress between the layers during the thermal shock test was analyzed by ANSYS software. The hidden crack between the layers was detected by an infrared thermal imager. The results show that the surface textures have significant influences on the anti-thermal-shock properties of Sc2O3-Y2O3-ZrO2-CaF2-PHB abradable coating by improving the contact area and optimizing the interface stress distribution. The bonding strengths of the coating are increased by 14.6% and 42.2% when the surface textures increase the contact area of the substrate and the coating by 41.3% and 104%, respectively. Compared with the coatings without texture treatments, the coatings with texture treatments can reduce coating thickness by 30% and the coatings do not peel off after the thermal shock tests. Influenced by the cyclic thermal stress, the cracks of abradable coating are initiated at the defect position and gradually propagated a shell-like shape. The textures on the surface of SiCf/SiC composites have deep influences on improving the high-temperature thermal shock life of Sc2O3-Y2O3-ZrO2-CaF2-PHB abradable coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.