Glioma is among the most fatal brain tumors characterized by a highly malignancy and rapid progression and early metastasis. Dysregulation of long non-coding RNA differentiation antagonizing non-protein coding RNA (LncRNA DANCR) is associated with the development, progression and metastasis of various cancers. In the present study, we investigated functional role of LncRNA DANCR in the malignancy of glioma. The results showed that LncRNA DANCR was increased in glioma tissues and cells compared with normal brain tissues and cells. DANCR expression was positively correlated with the malignancy and poor prognosis of glioma patients. DANCR contained a binding site of miR-33a-5p. miR-33a-5p was decreased in glioma tissues and cells compared with normal brain tissues and cells. Downregulation of miR-33a-5p was positively correlated with the malignancy and poor prognosis of glioma patients. In glioma tissues, the expression of DANCR was negatively correlated with the expression of miR-33a-5p. Downregulation of DANCR increased miR-33a-5p expression. miR-33a-5p mimic reduced the luciferase of DANCR-WT but not DANCR-MUT. DANCR pull-down showed the expression of miR-33a-5p. miR-33a-5p mimic enhanced knockdown of DANCR -induced inhibition of cell proliferation, migration, and EMT, and increase of apoptosis. Anti-miR-33a-5p reversed the effects of si- DANCR on cell malignancy. Knockdown of DANCR remarkably reduced the increase of tumor volumes in xenograft mouse models. In tumor tissues, knockdown of DANCR increased the expression of miR-33a-5p, reduced EMT and increased apoptosis. Our study provides novel insights in the functions of LncRNA DANCR-miR-33a-5p axis in tumorigenesis of glioma.
Precursor B cell acute lymphoblastic leukemia (B-ALL) is a B cell-derived, malignant disorder with the highest incidence among children. In addition to the genetic abnormality, a dysregulated immune system also has an important role in the pathogenesis of B-ALL. Myeloid-derived suppressor cells (MDSCs) represent one of the key drivers in immune tolerance against tumor cells, including various solid tumors and hematologic malignancies. The role of MDSCs in B-ALL remains poorly understood. Here, we showed that the granulocytic (G)-MDSC population was significantly elevated in both the peripheral blood and BM of patients with B-ALL, when compared with age-matched healthy controls. G-MDSCs levels correlated positively with clinical therapeutic responses and B-ALL disease prognostic markers, including minimal residual disease, and the frequencies of CD20 and blast cells. The immunosuppressive function of B-ALL-derived G-MDSCs was mediated through the production of reactive oxygen species and required direct cell-cell contact, with the potential participation of STAT3 signaling. Overall, the results of our study support accumulation and activation of G-MDSCs as a novel mechanism of immune evasion of tumor cells in patients with B-ALL and may be a new therapeutic target.
Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.
Background: Astrocytes are highly glycolytic cells that play a crucial role in chronic pain. Recently it has been found that inflammation and metabolism are related to the inflammatory stimuli closely that cause cellular metabolic changes. Pyruvate kinase M2 (PKM2) is a critical metabolic kinase in aerobic glycolysis or the Warburg effect. Besides, it also plays a crucial role in cell proliferation and signal transduction, but its role in astrocytes is still unclear. Methods:The chronic inflammatory pain model was set up by intraplantar injection of complete Freund's adjuvant (CFA) in Sprague Dawley (SD) rats as well as the cell model was constructed by lipopolysaccharidetreated primary astrocytes. Von Frey filament stimulation was used to continuously observe the changes of pain behavior in rats after modeling. Then, immunofluorescence staining and Western blot tests were used to observe the expression levels of glial fibrillary acidic protein (GFAP), pyruvate kinase (PKM2), signal transducers and activators of transcription 3 (STAT3) and high mobility group box-1 protein (HMGB1).After that, specific kits measured lactate contents. Finally, we observed the platelet-rich plasma's (PRP) effect on mechanical hyperalgesia in rats with inflammatory pain induced by CFA and its effect on related signal molecules.Results: We found that in the CFA-induced inflammatory pain model, astrocytes were significantly activated, GFAP was increased, PKM2 was significantly up-regulated, and the glycolytic product lactate was increased. Also, intrathecal injection of PRP increased the pain threshold, inhibited the activation of astrocytes, and decreased the expression of PKM2 and aerobic glycolysis; in LPS-activated primary astrocytes as an in vitro model, we found PKM2 translocation activationSTAT3 signaling resulted in sustained activation of astrocyte marker GFAP, and the expression level and localization of p-STAT3 were correlated with PKM2. PRP could inhibit the activation of astrocytes, reduce the expression of PKM2 and the expression levels of glycolysis and GFAP, GLUT1, and p-STAT3 in astrocytes.Conclusions: Our findings suggest PKM2 not only plays a glycolytic role in astrocytes, but also plays a crucial role in astrocyte-activated signaling pathways, and PRP attenuates CFA induced inflammatory pain by inhibiting aerobic glycolysis in astrocytes, providing a new therapeutic target for the treatment of inflammatory pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.