Background and Purpose Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis and axonal outgrowth. We therefore investigated whether the miR-17-92 cluster enriched exosomes (Exo-miR-17-92+) harvested from MSCs transfected with a miR-17-92 cluster plasmid enhance neurological recovery compared to control MSC derived exosomes (Exo-Con). Methods Rats subjected to 2 hours of transient middle cerebral artery occlusion (MCAO) were intravenously administered Exo-miR-17-92+, Exo-Con, or liposomes, and were sacrificed 28 days post MCAO. Histochemistry, immunohistochemistry and Golgi-Cox staining were used to assess dendritic, axonal, synaptic and myelin remodeling. Expression of phosphatase and tensin homolog (PTEN) and activation of its downstream proteins, protein kinase B (PKB or Akt), mechanistic target of rapamycin (mTOR), and glycogen synthase kinase 3 beta (GSK-3β) in the peri-infarct region were measured by means of Western blots. Results Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but Ex-miR-17-92+ treatment had significantly more robust effects on improvement of neurological function, and enhancements of oligodendrogenesis, neurogenesis and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the Ex-Con treatment. Moreover, Ex-miR-17-92+ treatment substantially inhibited PTEN, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of PTEN downstream proteins, Akt, mTOR and GSK-3β compared to Ex-Con treatment. Conclusions Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting PTEN to activate the PI3K/Akt/mTOR/GSK-3β signaling pathway.
Abstract-We have shown previously that cyclooxygenase-2 inhibition reduces cardiac hypertrophy and fibrosis postmyocardial infarction (MI) in a mouse model and that prostaglandin E 2 stimulates cardiomyocyte hypertrophy in vitro through its EP 4 receptor. Because the role of cardiac myocyte EP 4 in cardiac function and hypertrophy in vivo is unknown, we generated mice lacking EP 4 only in cardiomyocytes (CM-EP 4 knockout [KO]). Twelve-to 14-week-old mice were evaluated using echocardiography and histology. There were no differences in ejection fraction, myocyte cross-sectional area, and interstitial collagen fraction between KO mice and littermate controls. To test the hypothesis that EP 4 is involved in cardiac remodeling after MI, we induced MI by ligating the left anterior descending coronary artery. Two weeks later, the mice were subjected to echocardiography, and hearts were removed for histology and Western blot. There was no difference in infarct size between KO mice and controls; however, KO mice showed less myocyte cross-sectional area and interstitial collagen fraction than controls. Also, CM-EP4 KO mice had reduced ejection fraction. Because the transcription factor Stat-3 is involved in hypertrophy and protection from ischemic injury, we tested whether it was activated in control and KO mouse hearts after MI. Western blot indicated that Stat-3 was activated in control hearts after MI but not in KO hearts. Thus, CM-EP4 deletion decreased hypertrophy, fibrosis, and activation of Stat-3. However, cardiac function was unexpectedly worsened in these mice. We conclude that cardiac myocyte EP 4 plays a role in hypertrophy via activation of Stat-3, a process that seems to be cardioprotective.
. PGE2 stimulates human brain natriuretic peptide expression via EP4 and p42/44 MAPK. Am J Physiol Heart Circ Physiol 290: H1740 -H1746, 2006. First published January 20, 2006 doi:10.1152/ajpheart.00904.2005.-Brain natriuretic peptide (BNP) produced by cardiac myocytes has antifibrotic and antigrowth properties and is a marker of cardiac hypertrophy. We previously showed that prostaglandin E2 (PGE2) is the main prostaglandin produced in myocytes treated with proinflammatory stimuli and stimulates protein synthesis by binding to its EP4 receptor. We hypothesized that PGE2, acting through EP 4, also regulates BNP gene expression. We transfected neonatal ventricular myocytes with a plasmid encoding the human BNP (hBNP) promoter driving expression of a luciferase reporter gene. PGE2 increased hBNP promoter activity 3.5-fold. An EP 4 antagonist reduced the stimulatory effect of PGE2 but not an EP1 antagonist. Because EP4 signaling can involve adenylate cyclase, cAMP, and protein kinase A (PKA), we tested the effect of H-89, a PKA inhibitor, on PGE2 stimulation of the hBNP promoter. H-89 at 5 M decreased PGE2 stimulation of BNP promoter activity by 100%. Because p42/44 MAPK mediates the effect of PGE2 on protein synthesis, we also examined the role of MAPKs in the regulation of BNP promoter activity. PGE2 stimulation of the hBNP promoter was inhibited by a MEK1/2 inhibitor and a dominant-negative mutant of Raf, indicating that p42/44 MAPK was involved. In contrast, neither a p38 MAPK inhibitor nor a JNK inhibitor reduced the stimulatory effect of PGE2. Involvement of small GTPases was also studied. Dominant-negative Rap inhibited PGE2 stimulation of the hBNP promoter, but dominant-negative Ras did not. We concluded that PGE2 stimulates the BNP promoter mainly via EP4, PKA, Rap, and p42/44 MAPK. EP receptor; cardiac myocytes; hypertrophy; signaling pathways BRAIN NATRIURETIC PEPTIDE (BNP), one of three members of the natriuretic peptide family, is a cardiac hormone composed of 32 amino acids (in the human heart) and has diuretic, natriuretic, vasodilator, and antifibrotic properties (22). BNP is synthesized and secreted constitutively by the adult heart (primarily the ventricle) (2, 35). It is also regarded as a marker gene of hypertrophy. Circulating levels of BNP are elevated as a result of myocardial infarction (MI), hypertrophy, or heart failure (1, 35). Plasma BNP concentrations also serve as a biochemical marker of left ventricular dysfunction and a neuroendocrine marker of heart failure (24, 40). Patients with heart failure infused with BNP have reduced preload and afterload, increased stroke volume, and enhanced natriuresis and diuresis (3); thus it would appear that this cardiac hormone has beneficial and compensatory effects that modulate the progression of cardiac dysfunction. For example, BNP has antifibrotic actions in the heart (16, 31, 44). It may also have antigrowth actions in the vasculature, operating either directly or indirectly through stimulation of C-type natriuretic peptide synthesis (33,37,38...
To investigate the role of ultrasound-targeted microbubbles in the homing effect of bone marrow-derived mesenchymal stem cells (BMSCs) and in the therapeutic efficacy of BMSCs on the ischemic stroke. A middle cerebral artery occlusion (MCAO) model was induced by plug wire preparation. Seventy-two hours after MCAO, the treatment of BMSCs with ultrasound-targeted microbubble was assessed via modified neurological severity score (mNSS), infarct volumes, and cerebral edema. In addition, immunofluorescence was performed to analyze the homing effect of BMSCs with ultrasound-targeted microbubble. We find that BMSCs with ultrasound-targeted microbubble (BMMSCs with ultrasound-targeted microbubble [USMM] group) could significantly ameliorate mNSS, infarct volumes, and cerebral J Cell Biochem. 2019;120:3315-3322.wileyonlinelibrary.com/journal/jcb
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.