Neuroimaging-based functional connectivity (FC) analyses have revealed significant developmental trends in specific intrinsic connectivity networks linked to cognitive and behavioral maturation. However, knowledge of how brain functional maturation is associated with FC dynamics at rest is limited. Here, we examined age-related differences in the temporal variability of FC dynamics with data publicly released by the Nathan Kline Institute (NKI; n = 183, ages 7–30) and showed that dynamic inter-region interactions can be used to accurately predict individual brain maturity across development. Furthermore, we identified a significant age-dependent trend underlying dynamic inter-network FC, including increasing variability of the connections between the visual network, default mode network (DMN) and cerebellum as well as within the cerebellum and DMN and decreasing variability within the cerebellum and between the cerebellum and DMN as well as the cingulo-opercular network. Overall, the results suggested significant developmental changes in dynamic inter-network interaction, which may shed new light on the functional organization of typical developmental brains.
Highlights
We develop a dual-branch combination network (DCN) for combined segmentation and classification of COVID-19 using CT images.
Inspired by the attention mechanism, we propose a lesion attention (LA) module to improve the sensitivity to CT images with small lesions and facilitate early screening of COVID-19.
The LA module provide accurate attention maps to improve the interpretability of the network and contribute to further assessment of the classification result.
Recently, resting-state functional magnetic resonance imaging (fMRI) studies have been extended to explore fluctuations in correlations over shorter timescales, referred to as dynamic functional connectivity (dFC). However, the impact of global signal regression (GSR) on dFC is not well established, despite the intensive investigations of the influence of GSR on static functional connectivity (sFC). This study aimed to examine the effect of GSR on the performance of the sliding-window correlation, a commonly used method for capturing functional connectivity (FC) dynamics based on resting-state fMRI and simultaneous electroencephalograph (EEG)-fMRI data. The results revealed that the impact of GSR on dFC was spatially heterogeneous, with some susceptible regions including the occipital cortex, sensorimotor area, precuneus, posterior insula and superior temporal gyrus, and that the impact was temporally modulated by the mean global signal (GS) magnitude across windows. Furthermore, GSR substantially changed the connectivity structures of the FC states responding to a high GS magnitude, as well as their temporal features, and even led to the emergence of new FC states. Conversely, those FC states marked by obvious anti-correlation structures associated with the default model network (DMN) were largely unaffected by GSR. Finally, we reported an association between the fluctuations in the windowed magnitude of GS and the time-varying EEG power within subjects, which implied changes in mental states underlying GS dynamics. Overall, this study suggested a potential neuropsychological basis, in addition to nuisance sources, for GS dynamics and highlighted the need for caution in applying GSR to sliding-window correlation analyses. At a minimum, the mental fluctuations of an individual subject, possibly related to ongoing vigilance, should be evaluated during the entire scan when the dynamics of FC is estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.