Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.
ObjectiveThe pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC.DesignDeep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2.ResultsIn UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC.ConclusionWe demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.
Levels of P anaerobius are increased in human colon tumor tissues and adenomas compared with non-tumor tissues; this bacteria increases colon dysplasia in a mouse model of CRC. P anaerobius interacts with TLR2 and TLR4 on colon cells to increase levels of reactive oxidative species, which promotes cholesterol synthesis and cell proliferation.
MCE detects focal lesions in the upper and lower stomach with comparable accuracy with conventional gastroscopy. MCE is preferred by almost all patients, compared with gastroscopy, and can be used to screen gastric diseases without sedation. Clinicaltrials.gov number: NCT02219529.
SEPT9 gene methylation was validated as a biomarker for colorectal cancer (CRC) for >10 years and available as the Epi proColon test as an aid in CRC detection for >6 years. It was proven to be an accurate, reliable, fast, and convenient molecular test. In this opportunistic screening study, we validated a further simplified SEPT9 gene methylation assay in 1031 subjects in Chinese hospitals. The sensitivity for CRC detection was 76.6% at a specificity of 95.9%, and the results showed a satisfactory detection rate for each CRC stage, including early stages. The new SEPT9 assay, with enhanced technical simplicity, convenience, and lower cost, did not differ in performance compared with Epi proColon 2.0, the commercialized SEPT9 assay. The CRC detection sensitivity was further enhanced when the assay was combined with carcinoembryonic antigen (sensitivity, 86.4%) or fecal immunochemical test (sensitivity, 94.4%), suggesting that the combined tests may be an effective option for future opportunistic screening. In brief, our study has validated a new SEPT9 assay and combined testing as an aid in cancer detection, providing a new approach for opportunistic CRC screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.