Oxidative stress is believed to play an important role in the pathogenesis of smoking-induced chronic obstructive pulmonary disease. We hypothesized that polymorphisms of antioxidant genes glutathione S-transferase M1 (GSTM1), GSTT1, GSTP1, and heme oxygenase-1 (HMOX1) would be associated with susceptibility to accelerated decline of lung function in smokers. We genotyped 621 subjects (299 rapid decliners [change in forced expiratory volume in 1 second (DeltaFEV(1)) = -152 +/- 2.5 ml/year] and 322 nondecliners [DeltaFEV(1) = +15 +/- 1.5 ml/year]) selected from among smokers followed for 5 years in the National Heart, Lung, and Blood Institute Lung Health Study. Because genotype frequencies were different between ethnic groups, we limited the association study to 594 whites (286 rapid decliners and 308 nondecliners). None of the genotypes studied had a statistically significant effect on decline of lung function when analyzed separately. There was an association between rapid decline of lung function and presence of all three GST polymorphisms (odds ratio [OR] = 2.83; p = 0.03). A combination of a family history of chronic obstructive pulmonary disease with GSTP1 105Ile/Ile genotype was also associated with rapid decline of lung function (OR = 2.20; p = 0.01). However, due to the multiple comparisons that were made, these associations may represent type 1 error. There was no association between HMOX1 (GT)n alleles and the rate of decline in lung function in smokers.
BackgroundGiven the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus and human airway epithelial cells (AECs).Methodology16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37°C for 6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with conidia.Principal FindingsWe report that ontologies related to the innate immune response are activated by co-incubation with A. fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity.ConclusionTo our knowledge, this is the first study to apply a dual organism transcriptomics approach to interactions of A. fumigatus conidia and human airway epithelial cells. The up-regulation of IL-6 by epithelia and simultaneous activation of several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both health and disease. The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to improve host-pathogen outcomes.
BackgroundThe molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples.ResultsWe compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding.ConclusionsGlobin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.