Background: Whether or not the addition of 3D (three-dimension) printed models can enhance the teaching and learning environment for undergraduate students in regard to bone spatial anatomy is still unknown. In this study, we investigated the use of 3D printed models versus radiographic images as a technique for the education of medical students about bone spatial anatomy and fractures. Methods: The computed tomography (CT) data from four patients, each with a different fracture type (one spinal fracture, one pelvic fracture, one upper limb fracture, and one lower limb fracture), were obtained, and 3D models of the fractures were printed. A total of 90 medical students were enrolled in the study and randomly divided into two groups as follows: a traditional radiographic image group (presented by PowerPoint) and a 3D printed model group (combined PowerPoint and 3D models). Each student answered 5 questions about one type of fracture and completed a visual analog scale of satisfaction (0-10 points). Results: No significant differences were found in the upper limb or lower limb test scores between the 3D printed model group and the traditional radiographic image group; however, the scores on the pelvis and spine test for the traditional radiographic image group were significantly lower than the scores for the 3D printed model group (P=0.000). No significant differences were found in the test-taking times for the upper limb or lower limb (P=0.603 and P=0.746, respectively) between the two groups; however, the test-taking times for the pelvis and spine in the traditional radiographic image group were significantly longer than those of the 3D printed model group (P=0.000 and P=0.002, respectively). Conclusions: The 3D printed model may improve medical students' understanding of bone spatial anatomy and fractures in some anatomically complex sites.
Anterior occiput-to-axis screw fixation is more suitable than a posterior approach for some patients with a history of posterior surgery. The complex osseous anatomy between the occiput and the axis causes a high risk of injury to neurological and vascular structures, and it is important to have an accurate screw trajectory to guide anterior occiput-to-axis screw fixation.Thirty computed tomography (CT) scans of upper cervical spines were obtained for three-dimensional (3D) reconstruction. Cylinders (1.75 mm radius) were drawn to simulate the trajectory of an anterior occiput-to-axis screw. The imitation screw was adjusted to 4 different angles and measured, as were the values of the maximized anteroposterior width and the left-right width of the occiput (C0) to the C1 and C1 to C2 joints. Then, the 3D models were printed, and an angle guide device was used to introduce the screws into the 3D models referring to the angles calculated from the 3D images.We found the screw angle ranged from α1 (left: 4.99 ± 4.59°; right: 4.28 ± 5.45°) to α2 (left: 20.22 ± 3.61°; right: 19.63 ± 4.94°); on the lateral view, the screw angle ranged from β1 (left: 13.13 ± 4.93°; right: 11.82 ± 5.64°) to β2 (left: 34.86 ± 6.00°; right: 35.01 ± 5.77°). No statistically significant difference was found between the data of the left and right sides. On the 3D printed models, all of the anterior occiput-to-axis screws were successfully introduced, and none of them penetrated outside of the cortex; the mean α4 was 12.00 ± 4.11 (left) and 12.25 ± 4.05 (right), and the mean β4 was 23.44 ± 4.21 (left) and 22.75 ± 4.41 (right). No significant difference was found between α4 and β4 on the 3D printed models and α3 and β3 calculated from the 3D digital images of the left and right sides.Aided with the angle guide device, we could achieve an optimal screw trajectory for anterior occiput-to-axis screw fixation on 3D printed C0 to C2 models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.