Abstract:In order to effectively increase the drying rate and reduce the energy consumption, a dryer which reduces the air humidity at the dryer inlet using desiccant and regenerates the desiccant by recovering waste heat using a heat pipe heat exchanger was developed in this study. Both the adsorption rate and desorption rate of the dryer were measured at several ambient temperatures ranging from 15 • C to 35 • C, relative humidity levels of air ranging from 20% to 85%, and airflow rates ranging from 30 m 3 /h to 150 m 3 /h. The results showed that the adsorption rate in an environment of high relative humidity of air was 4.89 times higher than that of low relative humidity of air at 15 • C. Moreover, the difference in adsorption rate between two given relative humidity of air increased as the ambient temperature decreased. The specific energy consumption estimated with both energy consumption during desorption and the desorption rate indicated that the energy consumption was 8.27 kJ/g H 2 O without using recovered heat, while the energy consumption was 4.77 kJ/g H 2 O using recovered heat at 130 • C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.