Energy storage fracturing technology is a technical means by which oil displacement fluid is injected into the reservoir before the traditional hydraulic fracturing and subsequent implement fracturing. It provides a good solution for developing tight oil reservoirs. The efficiency of this technology significantly depends on the injection performance of the fracturing fluid, and the ability of its liquid phase to penetrate the formation. According to the needs of energy storage fracturing, four surfactants were selected. Then, based on the performance evaluation of the four surfactants, the compositions of two surfactant systems were determined. The performance of slickwater fracturing fluids for energy storage hydraulic fracturing was evaluated. The mechanism of tight oil displacement in energy storage hydraulic fracturing was analyzed. The results showed that the compositions of oil–displacement agents 1 and 2 for energy storage fracturing were successfully acquired. The performance of oil–displacement agent 2 was slightly better than that of oil–displacement agent 1 at a concentration of 0.25 wt%. The defined composition of the fracturing fluid met requirements for energy storage hydraulic fracturing. It was demonstrated that the tight oil in small pores was effectively substituted by the fracturing fluid, and subsequently aggregated in the large pores. The tight oil displacement ratio increased with an increase in temperature, and the difference among the tight oil displacement ratios of tight sandstone cores increased with increases in their permeability differences.
“Fracturing network+imbibition oil production” is a new attempt to effectively develop low-permeability tight reservoirs. Fracturing fluid is not only a carrier for sand carrying but also a tool in the process of imbibition. On the basis of imbibition experiments, combined with nuclear magnetic resonance and pseudo-color processing technology, this paper clarified the dominant forces of different types of pore-throat and quantitatively characterized the contribution of different levels of pore-throat to imbibition oil recovery. The results show that gravity is the main controlling force of imbibition for reservoirs with higher permeability. Fluid replacement mainly occurs in the early period of imbibition. Macropores contribute most of the imbibition recovery, mesopores have a weak contribution, and the contribution of micropores and pinholes can be ignored. For the reservoirs with low permeability, capillary force is the main controlling force of imbibition. Fluid replacement mainly occurs in the later period of imbibition. Macropores contribute most of the imbibition recovery rate, mesopores contribute a small part of the imbibition recovery factor, and the contribution of micropores and pinholes can be ignored. This paper clarified that macropores and mesopores are the main sources of the contribution of imbibition recovery efficiency, and oil content and connectivity are key factors for the imbibition recovery efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.