To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.
Producing concentrated sugars and minimizing water usage are key elements in the economics and environmental sustainability of advanced biofuels. Conventional pretreatment processes that require a water-wash step can result in losses of fermentable sugars and generate large volumes of wastewater or solid waste. To address these problems, we have developed high gravity biomass processing with a one-pot conversion technology that includes ionic liquid pretreatment, enzymatic saccharification, and yeast fermentation for the production of concentrated fermentable sugars and high-titer cellulosic ethanol. The use of dilute bio-derived ionic liquids (a.k.a. bionic liquids) enables one-pot, high-gravity bioethanol production due to their low toxicity to the hydrolytic enzyme mixtures and microbes used. We increased biomass digestibility at >30 wt% by understanding the relationship between ionic liquid and biomass loading, yielding 41.1 g L -1 of ethanol (equivalent to an overall yield of 74.8% on a glucose basis)using an integrated one-pot fed-batch system. Our technoeconomic analysis indicates that the optimized one-pot configuration provides significant economic and environmental benefits for cellulosic biorefineries by reducing the amount of ionic liquid required by ~90% and pretreatment-related water inputs and wastewater generation by ~85%. In turn, these improvements can reduce net electricity use, greenhouse gas-intensive chemical inputs for wastewater treatment, and waste generation. The result is an overall 40% reduction in the cost of cellulosic ethanol produced and a reduction in local burdens on water resources and waste management infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.