Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green-fluorescent-protein (GFP) tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.
SUMMARY
microRNAs regulate developmental cell fate decisions, tissue homeostasis and oncogenesis in distinct ways relative to proteins. Here, we show that the tumor suppressor microRNA miR-34a is a cell fate determinant in early stage dividing colon cancer stem cells (CCSCs). In pair-cell assays, miR34a distributes at high levels in differentiating progeny, while low levels of miR34a demarcate self renewing CCSCs. Moreover, miR34a loss of function and gain of function alters the balance between self-renewal and differentiation both in vitro and in vivo. Mechanistically, miR34a sequesters Notch1 mRNA to generate a sharp threshold response where a bimodal Notch signal specifies the choice between self-renewal versus differentiation. In contrast, the canonical cell fate determinant Numb regulates Notch levels in a continuously graded manner. Taken together, our findings highlight a unique microRNA regulated mechanism that converts noisy input into a toggle switch for robust cell fate decisions in CCSCs.
H3 and H4 is associated with increased DNA accessibility to binding proteins and increased transcription (Bhattacharyya et al., 1997; reviewed in Grunstein, 1997), while histone hypoacetylation is associated with transcriptionally silent chromosomal domains (Braunstein
Purpose The European Neuroendocrine Tumor Society (ENETS) and the American Joint Committee on Cancer (AJCC) staging classifications are two widely used systems in managing pancreatic neuroendocrine tumors. However, there is no universally accepted system. Methods An analysis was performed to evaluate the application of the ENETS and AJCC staging classifications using the SEER registry (N = 2,529 patients) and a multicentric series (N = 1,143 patients). A modified system was proposed based on analysis of the two existing classifications. The modified system was then validated. Results The proportion of patients with AJCC stage III disease was extremely low for both the SEER series (2.2%) and the multicentric series (2.1%). For the ENETS staging system, patients with stage I disease had a similar prognosis to patients with stage IIA disease, and patients with stage IIIB disease had a lower hazard ratio for death than did patients with stage IIIA disease. We modified the ENETS staging classification by maintaining the ENETS T, N, and M definitions and adopting the AJCC staging definitions. The proportion of patients with stage III disease using the modified ENETS (mENETS) system was higher than that of the AJCC system in both the SEER series (8.9% v 2.2%) and the multicentric series (11.6% v 2.1%). In addition, the hazard ratio of death for patients with stage III disease was higher than that for patients with stage IIB disease. Moreover, statistical significance and proportional distribution were observed in the mENETS staging classification. Conclusion An mENETS staging classification is more suitable for pancreatic neuroendocrine tumors than either the AJCC or ENETS systems and can be adopted in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.