We report a facile and green approach to fabricate Cu2−xSe/rGO nanocomposites at room temperature, with tunable plasmonic properties as well as favorable biocompatibility, and exploit them for cell imaging in vitro.
Carbon dots doped with germanium (GeCDs) were firstly prepared by a new simple 15 min carbonation synthesis route, exhibiting excitation-independent photoluminescence (PL), which could avoid autofluorescence in bioimaging applications. The as-prepared GeCDs have low cell toxicity, good biocompatibility, high intracellular delivery efficiency, stability and could be applied for detection of mercury(II) ions with excellent selectivity in complicated medium. It is to be noted that the as-prepared GeCDs used as a new type of probe for visualization of dynamic invasions of mercury(II) ions into Hep-2 cells display greatly different properties from most of the previously reported CDs which are regularly responsive to iron ions. All the results suggest that the GeCDs can be employed for visualization and monitoring of the significant physiological changes of living cells induced by Hg(2+).
In this contribution, we report a molecular recognition between adenosine and its aptamer, which leads to the formation of a four-stranded tetraplex structures (G-quartet) of the aptamer. It is found that the formed G-quartet could induce the side-by-side self-assembly of gold nanorods (AuNRs) owing to the electrostatic interaction between the positive charge of cetyltrimethylammonium bromide (CTAB) on the AuNR surface and the negative charge of the formed G-quartet. Furthermore, the side-by-side self-assembly of AuNRs is characterized by the enhancement of plasmon resonance light scattering (PRLS) signals and the blue-shift of the longitudinal plasmon resonance absorption (LPRA) band owing to the plasmon resonance coupling. Then, based on the enhanced PRLS signals, a simple, highly selective and sensitive detection method for adenosine was developed in the range of 4.0-80.0 nM with the limit of determination of 2.0 nM, which is up to now the best sensitive optical detection method to our knowledge. This method has been successfully applied to the detection of adenosine phosphates in the brains of SD rats, which was in good agreement with a high-performance liquid chromatographic (HPLC) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.