Since its incursion into North America in 1999, West Nile virus (WNV) has spread rapidly across the continent resulting in numerous human infections and deaths. Owing to the absence of an effective diagnostic test and therapeutic treatment against WNV, public health officials have focussed on the use of preventive measures in an attempt to halt the spread of WNV in humans. The aim of this paper is to use mathematical modelling and analysis to assess two main anti-WNV preventive strategies, namely: mosquito reduction strategies and personal protection. We propose a single-season ordinary differential equation model for the transmission dynamics of WNV in a mosquito-bird-human community, with birds as reservoir hosts and culicine mosquitoes as vectors. The model exhibits two equilibria; namely the disease-free equilibrium and a unique endemic equilibrium. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if a certain threshold quantity (R 0 ), which depends solely on parameters associated with the mosquito-bird cycle, is less than unity. The public health implication of this is that WNV can be eradicated from the mosquito-bird cycle (and, consequently, population) if the adopted mosquito reduction strategy (or strategies) can make R 0 < 1. On the other hand, it is shown, using a novel and robust technique that is based on the theory of monotone dynamical systems coupled with a regular perturbation argument and a Liapunov function, that if R 0 > 1, then the unique endemic equilibrium is globally stable for small WNV-induced avian mortality. Thus, in this case, WNV persists in the mosquito-bird population.
This paper is devoted to the machinery necessary to apply the general theory of monotone dynamical systems to neutral functional differential equations. We introduce an ordering structure for the phase space, investigate its compatibility with the usual uniform convergence topology, and develop several sufficient conditions of strong monotonicity of the solution semiflows to neutral equations. By applying some general results due to Hirsch and Matano for monotone dynamical systems to neutral equations, we establish several (generic) convergence results and an equivalence theorem of the order stability and convergence of precompact orbits. These results are applied to show that each orbit of a closed biological compartmental system is convergent to a single equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.