Rain streaks can severely degrade the visibility, which causes many current computer vision algorithms fail to work. So it is necessary to remove the rain from images. We propose a novel deep network architecture based on deep convolutional and recurrent neural networks for single image deraining. As contextual information is very important for rain removal, we first adopt the dilated convolutional neural network to acquire large receptive field. To better fit the rain removal task, we also modify the network. In heavy rain, rain streaks have various directions and shapes, which can be regarded as the accumulation of multiple rain streak layers. We assign different alpha-values to various rain streak layers according to the intensity and transparency by incorporating the squeeze-and-excitation block. Since rain streak layers overlap with each other, it is not easy to remove the rain in one stage. So we further decompose the rain removal into multiple stages. Recurrent neural network is incorporated to preserve the useful information in previous stages and benefit the rain removal in later stages. We conduct extensive experiments on both synthetic and real-world datasets. Our proposed method outperforms the state-of-the-art approaches under all evaluation metrics. Codes and supplementary material are available at our project webpage: https://xialipku.github.io/RESCAN.
Self-attention mechanism has been widely used for various tasks. It is designed to compute the representation of each position by a weighted sum of the features at all positions. Thus, it can capture long-range relations for computer vision tasks. However, it is computationally consuming. Since the attention maps are computed w.r.t all other positions. In this paper, we formulate the attention mechanism into an expectation-maximization manner and iteratively estimate a much more compact set of bases upon which the attention maps are computed. By a weighted summation upon these bases, the resulting representation is low-rank and deprecates noisy information from the input. The proposed Expectation-Maximization Attention (EMA) module is robust to the variance of input and is also friendly in memory and computation. Moreover, we set up the bases maintenance and normalization methods to stabilize its training procedure. We conduct extensive experiments on popular semantic segmentation benchmarks including PAS-CAL VOC, PASCAL Context and COCO Stuff, on which we set new records 1 .
Abstract-This note is concerned with stability and controller design of networked control systems (NCSs) with packet dropouts. New NCS models are provided considering both single-and multiple-packet transmissions. Both sensor-to-controller (S/C) and controller-to-actuator (C/A) packet dropouts are modeled and their history behavior is described by different independent Markov chains. In term of the given models, sufficient conditions for stochastic stability are derived in the form of linear matrix inequalities (LMIs) and corresponding control laws are given. Numerical examples illustrate the effectiveness of the results.Index Terms-Markov chains, networked control systems (NCSs), packet dropout, stochastic stability.
Recent developed deep unsupervised methods allow us to jointly learn representation and cluster unlabelled data. These deep clustering methods mainly focus on the correlation among samples, e.g., selecting high precision pairs to gradually tune the feature representation, which neglects other useful correlations. In this paper, we propose a novel clustering framework, named deep comprehensive correlation mining (DCCM), for exploring and taking full advantage of various kinds of correlations behind the unlabeled data from three aspects: 1) Instead of only using pairwise information, pseudo-label supervision is proposed to investigate category information and learn discriminative features. 2) The features' robustness to image transformation of input space is fully explored, which benefits the network learning and significantly improves the performance.3) The triplet mutual information among features is presented for clustering problem to lift the recently discovered instance-level deep mutual information to a triplet-level formation, which further helps to learn more discriminative features. Extensive experiments on several challenging datasets show that our method achieves good performance, e.g., attaining 62.3% clustering accuracy on CIFAR-10, which is 10.1% higher than the state-of-the-art results 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.