The plant hormone auxin must be transported throughout plants in a cell-to-cell manner to affect its various physiological functions. ABCB transporters are critical for this polar auxin distribution, but the regulatory mechanisms controlling their function is not fully understood. The auxin transport activity of ABCB1 was suggested to be regulated by a physical interaction with FKBP42/Twisted Dwarf1 (TWD1), a peptidylprolyl cis-transisomerase (PPIase), but all attempts to demonstrate such a PPIase activity by TWD1 have failed so far.By using a structure-based approach, we identified several surface-exposed proline residues in the nucleotide binding domain and linker of Arabidopsis ABCB1, mutations of which do not alter ABCB1 protein stability or location but do affect its transport activity. P1008 is part of a conserved signature D/E-P motif that seems to be specific for Auxin-TransportingABCBs, which we now refer to as ATAs. Mutation of the acidic residue also abolishes auxin transport activity by ABCB1. All higher plant ABCBs for which auxin transport has been conclusively proven carry this conserved motif, underlining its predictive potential. Introduction of this D/E-P motif into malate importer, ABCB14, increases both its malate and its background auxin transport activity, suggesting that this motif has an impact on transport capacity. The D/E-P1008 motif is also important for ABCB1-TWD1 interactions and activation of ABCB1-mediated auxin transport by TWD1.In summary, our data imply a new function for TWD1 acting as a putative activator of ABCB-mediated auxin transport by cis-trans isomerization of peptidyl-prolyl bonds.
The degradation of plastics has attracted much attention from the global community. Polyethylenes (PEs) as the most abundant synthetic plastics are mostly studied. PE is non-degradable and non-polar because of the sole presence of the pure hydrocarbon components. Concurrent incorporation of both in-chain cleavable and functional groups into the PE chain is an effective pathway to overcome the non-degradable and non-polar issue; however, the method for achieving this pathway remains elusive. Here, we report the strictly nonalternating (>99%) terpolymerization of ethylene with CO and fundamental polar monomers via a coordination–insertion mechanism using late transition metal catalysts, which effectively prevents the formation of undesired chelates originating from both co-monomers under a low CO concentration. High-molecular-weight linear PEs with both in-chain isolated keto (>99%) and main-chain functional groups are prepared. The incorporation of the key low-content isolated keto groups makes PEs photodegradable while retains their desirable bulk material properties, and the introduction of polar functional groups considerably improves their surface properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.