Pinus armandi franch is a unique specialty plant in China and its seed oil contains high levels of essential fatty acids (EFA), particularly linoleic acid (LA), which has several pharmaceutical properties. Pinus armandi franch seed oil is a nice resource of linoleic acid with a content of 63% of the total fatty acids. Linoleic acid is an essential fatty acid, whose absence in a normal diet is responsible for the development of various abnormal disorders. This work reported purified LA from Pinus armandi franch seed oil could lower MDA content of lipid peroxidation on rats with hyperlipidemia significantly. TAC activity of liver, heart and serum was enhanced significantly, as well as SOD activity was increased. It demonstrated purified LA from Pinus armandi franch seed oil could improve antioxidant levels of hyperlipidemia rats effectively, enhance the activity of antioxidant enzyme and reduce the content of lipid peroxide, thereby improving lipid metabolism.
The current study demonstrated that theasinensin A (TSA) had a potential to form the complex with hydrophobic Trp-containing dipeptides, and to reduce their membrane potential by artificial-lipid membrane taste sensor. At a 1:3 molar ratio of the 6 Trp-containing dipeptides together with TSA, we observed a significant chemical shift of the protons of the dipeptides (Δδ) to a high magnetic field, when analyzed using 1H-nuclear-magnetic resonance (NMR) spectroscopy. The Δδ values were correlated with the hydrophobicity (log P) of the dipeptides and significant correlations were obtained (P = 0.022, R2 = 0.77); e.g., Trp-Leu with the highest log P value of 1.623 among the tested dipeptides showed the highest Δδ value of 0.105 ppm for the H7 proton of Trp-Leu, while less chemical shifts were observed in theasinensin B and epigallocatechin-3-O-gallate. Diffusion-ordered NMR spectroscopy revealed that the diffusion coefficient of 3 mM of Trp-Leu (7.6 × 10−11 m2/s) at a pulse field gradient in the range 0.05–0.3 T/m decreased in the presence of 3 mM TSA (6.6 × 10−11 m2/s), suggesting that Trp-Leu forms a complex with TSA. Quantum mechanical calculations and rotating frame nuclear Overhauser effect-NMR spectroscopy provided configuration information on the geometry of the complex that Trp-Leu formed with TSA (1:1 complex) with a ΔG energy of –8.7 kJ/mol. A sensor analysis using artificial-lipid membranes demonstrated that the changes in membrane potential of 1 mM Trp-Leu (21.8 ± 1.3 mV) and Leu-Trp (5.3 ± 0.9 mV) were significantly (P < 0.001) reduced by 1 mM TSA (Trp-Leu, 13.1 ± 2.4 mV; Leu-Trp, 3.5 ± 0.5 mV; TSA alone, 0.2 ± 0.01 mV), indicating the effective suppression of hydrophobicity of dipeptides by TSA-formed complex.
Flaxseed oil contains significant amounts of essential fatty acid, α-linolenic acid (ALA) with a content of 61% of the total fatty acid. ALA is attracting increasing attention because of their importance to human health. ALA has various physiological activities whose absence in the diet is responsible for the development of a wide variety of abnormalities. Highly purified ALA is required on pharmaceutical applications. This work reports as recovery of highly purified ALA from flaxseed oil by means of a process, which involves simultaneous oil saponification–extraction, followed by the ethyl esterification of fatty acids. Thereafter, the polyunsaturated fatty acids (PUFA) were concentrated by molecular distillation method, and ethyl esters below ALA were fractionated from ethyl–PUFA concentrate by mean of open column chromatography with silver–silica gel as stationary phase. The recovery in the combined process was 79%, and the final purity was 94.7%. Therefore, highly pure PUFA ALA could be procured by argentated silica gel chromatography column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.