In general, searching the lowest-energy structures is considerably more time-consuming for bimetallic clusters than for monometallic ones because of the presence of an increasing number of homotops and geometrical isomers. In this article, a basin hopping genetic algorithm (BHGA), in which the genetic algorithm is implanted into the basin hopping (BH) method, is proposed to search the lowest-energy structures of 13-, 38-, and 55-atom PtCo bimetallic clusters. The results reveal that the proposed BHGA, as compared with the standard BH method, can markedly improve the convergent speed for global optimization and the possibility for finding the global minima on the potential energy surface. Meanwhile, referencing the monometallic structures in initializations may further raise the searching efficiency. For all the optimized clusters, both the excess energy and the second difference of the energy are calculated to examine their relative stabilities at different atomic ratios. The bond order parameter, the similarity function, and the shape factor are also adopted to quantitatively characterize the cluster structures. The results indicate that the 13- and the 55-atom systems tend to be icosahedral despite different degrees of lattice distortions. In contrast, for the 38-atom system, Pt10Co28, Pt11Co27, Pt17Co21, Pt19Co19, Pt20Co18, and Pt30Co8 tend to be disordered, while Pt21Co17 presents a defected face-centered cubic (fcc) structure, and the remaining clusters are perfect fcc. The methodology and results of this work have referential significance to the exploration of other alloy clusters.
Global optimization of multicomponent cluster structures is considerably time-consuming due to the existence of a vast number of isomers. In this work, we proposed an improved self-adaptive differential evolution with the neighborhood search (SaNSDE) algorithm and applied it to the global optimization of bimetallic cluster structures. The cross operation was optimized, and an improved basin hopping module was introduced to enhance the searching efficiency of SaNSDE optimization. Taking (PtNi) N (N = 38 or 55) bimetallic clusters as examples, their structures were predicted by using this algorithm. The traditional SaNSDE algorithm was carried out for comparison with the improved SaNSDE algorithm. For all the optimized clusters, the excess energy and the second difference of the energy were calculated to examine their relative stabilities. Meanwhile, the bond order parameters were adopted to quantitatively characterize the cluster structures. The results reveal that the improved SaNSDE algorithm possessed significantly higher searching capability and faster convergence speed than the traditional SaNSDE algorithm. Furthermore, the lowest-energy configurations of (PtNi) 38 clusters could be classified as the truncated octahedral and disordered structures. In contrast, all the optimal (PtNi) 55 clusters were approximately icosahedral. Our work fully demonstrates the high efficiency of the improved algorithm and advances the development of global optimization algorithms and the structural prediction of multicomponent clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.