Interleukin-2 is a pleiotropic cytokine produced after antigen activation that plays pivotal roles in the immune response. Discovered as a T-cell growth factor, IL-2 additionally promotes CD8+ T cell and NK cell cytolytic activity, and modulates T cell differentiation programs in response to antigen, promoting naïve CD4+ T cell differentiation into T helper-1 (Th1) and T helper-2 (Th2) cells while inhibiting T helper-17 (Th17) and T follicular helper (Tfh) cell differentiation. Moreover, IL-2 is essential for the development and maintenance of T regulatory (Treg) cells and for activation-induced cell death, thereby mediating tolerance and limiting inappropriate immune reactions. In this review, we focus on the molecular mechanisms and complex cellular actions of IL-2, its cooperative and opposing effects with other cytokines, and how both promoting and blocking the actions of IL-2 are being utilized in clinical medicine.
Interleukin-2 (IL-2) is a pleiotropic cytokine that drives T-cell growth, augments NK cytolytic activity, induces the differentiation of regulatory T cells, and mediates activation-induced cell death. Along with IL-4, IL-7, IL-9, IL-15, and IL-21, IL-2 shares the common cytokine receptor γ chain, γc, which is mutated in humans with X-linked severe combined immunodeficiency. Herein, we primarily focus on the recently discovered complex roles of IL-2 in broadly modulating T cells for T helper cell differentiation. IL-2 does not specify the type of Th differentiation that occurs; instead, IL-2 modulates expression of receptors for other cytokines and transcription factors, thereby either promoting or inhibiting cytokine cascades that correlate with each Th differentiation state. In this fashion, IL-2 can prime and potentially maintain Th1 and Th2 differentiation as well as expand such populations of cells, whereas it inhibits Th17 differentiation but also can expand Th17 cells.
To understand the molecular bases for cytokine redundancy and pleiotropy, we have compared the Stat proteins activated in peripheral blood lymphocytes (PBLs) by cytokines with shared and distinct actions. Interleukin-2 (IL-2) rapidly activated Stat5 in fresh PBL, and Stat3 and Stat5 in preactivated PBL. IL-7 and IL-15 induced the same complexes as IL-2, a feature explained by the existence of similar tyrosine-phosphorylated motifs in the cytoplasmic domains of IL-2R beta and IL-7R that can serve as docking sites for Stat proteins. IL-13 Induced the same complexes as IL-4, a finding explained by our studies implicating IL-4R as a shared component of the receptors. These studies demonstrate that a single cytokine can activate different combinations of Stat proteins under different physiological conditions, and also indicate two mechanisms by which distinct cytokines can activate the same Stat protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.