It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.
Solar cells based on hybrid organic-inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain boundary (GB) defects and crystal lattice defects by introducing a strong electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into perovskite functional layer. Importantly, it has been found that F4TCNQ is filled in GBs and there is a significant reduction of metallic lead defects and iodide vacancies in the perovskite crystal lattice. The bulk heterojunction perovskite-F4TCNQ film exhibits superior electronic quality with improved charge separation and transfer, enhanced and balanced charge mobility, as well as suppressed recombination. As a result, the F4TCNQ doped perovskite device shows excellent device performance, especially the reproducible high fill factor (up to 80%) and negligible hysteresis effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.