Background
Our previous study proved that Shen Qi Li Xin formula (SQLXF) improved the heart function of chronic heart failure (CHF) patients, while the action mechanism remains unclear.
Methods
H&E staining and TUNEL staining were performed to measure myocardial damages. Western blot was used to examine the expression of proteins. Moreover, CCK-8 assay and flow cytometry were used to measure cell viability and cell apoptosis, respectively. Concentrations of ATP and ROS in cells, and mitochondrial membrane potential (MMP) were detected to estimate oxidative stress.
Results
In vivo, we found that SQLXF improved cardiac hemodynamic parameters, reduced LDH, CK-MB and BNP production, and attenuated myocardial damages in CHF rats. Besides, SQLXF promoted mitochondrial fusion-related proteins expression and inhibited fission-related proteins expression in CHF rats and oxygen glucose deprivation/reoxygenation (OGD/R)-induced cardiac myocytes (CMs). In vitro, our data show that certain dose of SQLXF inhibited OGD/R-induced CMs apoptosis, cell viability decreasing and oxidative stress.
Conclusion
Overall, certain dose of SQLXF could effectively improve the cardiac function of CHF rats through inhibition of CMs apoptosis via balancing mitochondrial fission and fusion. Our data proved a novel action mechanism of SQLXF in CHF improvement, and provided a reference for clinical.
Atherosclerosis (AS) is one of the most common vascular diseases. The endothelial injury theory indicates that atherosclerotic plaque is the result of endothelial cell injury. Recent studies have revealed that circRNAs are abnormally expressed in AS cell models, which are implicated in the regulation of various cell behaviors. In this study, we showed the downregulation of circNMD3 in AS, and studied its role in the model of endothelial cell injury by proliferation and apoptosis assay, caspase 3 activity assay, and ELISA. We also identified and validated its downstream targets by luciferase reporter assay, RNA pull-down experiment, Western blot, and RT-qPCR. CircNMD3 overexpression or miR-498 knockdown could inhibit the ox-LDL (oxidatively modified low-density lipoprotein)-induced injury in HUVEC (human umbilical vein endothelial cells), while the co-transfection of miR-498 mimic or siRNA targeting BAMBI (BMP and activin membrane bound inhibitor) attenuated the protective effect of circNMD3 overexpression. Overall, our data suggest that circNMD3 regulates the miR-498/BAMBI axis in endothelial cells to protect ox-LDL-induced damages. As a molecular sponge of miR-498, circNMD3 regulates the level of miR-498, which in turn modulates BAMBI expression and suppresses ox-LDL-induced injury in HUVECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.