Severe acute respiratory syndrome (SARS) coronavirus has been known to damage multiple organs; however, little is known about its impact on the reproductive system. In the present study, we analyzed the pathological changes of testes from six patients who died of SARS. Results suggested that SARS caused orchitis. All SARS testes displayed widespread germ cell destruction, few or no spermatozoon in the seminiferous tubule, thickened basement membrane, and leukocyte infiltration. The numbers of CD3þ T lymphocytes and CD68þ macrophages increased significantly in the interstitial tissue compared with the control group (P , 0.05). SARS viral genomic sequences were not detected in the testes by in situ hybridization. Immunohistochemistry demonstrated abundant IgG precipitation in the seminiferous epithelium of SARS testes, indicating possible immune response as the cause for the damage. Our findings indicated that orchitis is a complication of SARS. It further suggests that the reproductive functions should be followed and evaluated in recovered male SARS patients.immunohistochemistry, in situ hybridization, orchitis, SARS, spermatogenesis, testis
Samples from naked oat were steeped and germinated under controlled conditions in an incubator. Changes of phenolic compounds and antioxidant activity were investigated in oats during steeping and germination. Results revealed that phenolic compounds and antioxidant activity of oats varied with the difference in steeping and germination stages. Compared with raw grains, short-term steeping treatment did not show significant effects (p > 0.05) on phenolic content. Germination can significantly result in the decrease in bound phenolic and the increase in free and total phenolics. Main phenolic acids and avenanthramides were isolated and quantified by HPLC analysis. During steeping, phenolic acids decreased (p < 0.05); avenanthramide N-(3',4'-dihydroxy)-(E)-cinnamoyl-5-hydroxyanthranilic acid first decreased and then increased (p < 0.05), while avenanthramides N-(4'-hydroxy)-(E)-cinnamoyl-5-hydroxyanthranilic acid and N-(4'-hydroxy-3'-methoxy)-(E)-cinnamoyl-5-hydroxyanthranilic acid did not change significantly (p > 0.05). During germination, gallic and caffeic acids first increased (p < 0.05) and then decreased, whereas p-coumaric and ferulic acids and avenanthramides increased (p < 0.05). Nevertheless, avenanthramides did not change significantly (p > 0.05) during the last stage of germination. Oat extracts exhibited increasing high antioxidant activity with the steeping and germination going on, which may explain that antioxidant activity correlated (p < 0.01) significantly with the content of phenolic compounds.
A seroepidemiologic study was conducted in North China in 2003 to determine the neutralizing antibody titer of severe acute respiratory syndrome (SARS) convalescent sera. A total of 99 SARS convalescent serum samples were collected from patients from the Inner Mongolia Autonomous Region, Hebei Province, and Beijing 35-180 days after the onset of symptoms. The anti-SARS antibodies were detected by enzyme-linked immunosorbent assay (ELISA), neutralization assay, and Western blot. Eighty-seven serum samples were confirmed to be positive for SARS antibodies. The neutralizing antibody titer of the 87 positive sera was analyzed quantitatively by neutralization assay. The geometric mean titer (GMT) of the 87 convalescent sera was 1:61. The Kolmogorov-Smirnov test showed that the neutralizing antibody titers conform to normal distribution, which suggests that the average anti-SARS antibody level in this study was representative of the convalescent antibody level of the SARS population. This result could be useful for the development and quality control of SARS vaccines.
Severe acute respiratory syndrome (SARS) is a novel infectious disease with disastrous clinical consequences, in which the lungs are the major target organs. Previous studies have described the general pathology in the lungs of SARS patients and have identified some of the cell types infected by SARS coronavirus (SARS-CoV). However, at the time of this writing, there were no comprehensive reports of the cellular distribution of the virus in lung tissue. In this study, we have performed double labeling combining in situ hybridization with immunohistochemistry and alternating each of these techniques separately in consecutive sections to evaluate the viral distribution on various cell types in the lungs of seven patients affected with SARS. We found that SARS-CoV was present in bronchial epithelium, type I and II pneumocytes, T lymphocytes, and macrophages/monocytes. For pneumocytes, T lymphocytes, and macrophages, the infection rates were calculated. In addition, our present study is the first to demonstrate infection of endothelial cells and fibroblasts in SARS. (Am J Pathol
Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.