In millimeter wave (mmWave) massive multipleinput multiple-output (MIMO) systems, acquiring accurate channel state information is essential for efficient beamforming (BF) and multiuser interference cancellation, which is a challenging task since a low signal-to-noise ratio is encountered before BF in large antenna arrays. The mmWave channel exhibits a 3-D clustered structure in the virtual angle of arrival (AOA), angle of departure (AOD) and delay domain that is imposed by the effect of power leakage, angular spread and cluster duration. We extend the approximate message passing (AMP) with nearest neighbor pattern learning algorithm for improving the attainable channel estimation performance, which adaptively learns and exploits the clustered structure in the 3-D virtual AOA-AOD-delay domain. The proposed method is capable of approaching the performance bound described by the state evolution based on vector AMP framework, and our simulation results verify its superiority in mmWave systems associated with a broad bandwidth.
We extend retrospective cost adaptive control (RCAC) to command following for uncertain Hammerstein systems. We assume that only one Markov parameter of the linear plant is known and that the input nonlinearity is monotonic but otherwise unknown. Auxiliary nonlinearities are used within RCAC to account for the effect of the input nonlinearity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.