Grooming is a common behavior of some mammals. Previous studies have shown that grooming is a means by which animals clean themselves, remove ectoparasites, and lower their body temperature. It is also involved in olfactory communication. Bats belong to the order Chiroptera and, like most mammals, are the natural host of many ectoparasites. Bat grooming, including licking and scratching, is one of the ways to reduce the adverse effects caused by ectoparasites. Bat grooming may also be induced by exogenous odor. In this study, we used lesser flat‐headed bats (
Tylonycteris pachypus
) to test the hypothesis that exogenous odor affects the self‐grooming behavior of bats. Results showed that external odor from distantly related species caused lesser flat‐headed bats to spend more time in self‐grooming. Lesser flat‐headed bats that received odor from humans spent the longest time in self‐grooming, followed by those that received odor from a different species of bats (
T. robustula
). Lesser flat‐headed bats that received odor form the same species of bats, either from the same or a different colony, spent the least amount of time in self‐grooming. These results suggest that bats can recognize conspecific and heterospecific through body scent.
Tylonycteris pachypus is a gregarious bat species with tens of individuals in a colony. The mechanisms by which mother bats recognize their pups and adult bats recognize each other are not clear. We hypothesized that such recognition is achieved by chemical discrimination and performed experiments to test the hypothesis. Results showed that mother bats were much more attracted to the scent from their own pups. For adult bats, females were attracted to the scent from both male and female groupmates but had a higher preference to the scent from female than from male groupmates. Male bats were much more attracted to the scent from male groupmates while showed no preference to the scent from female groupmates. Within a group, both female and male bats had no difference in preference to the scent from the same or opposite sex. These results suggest that mother–pup and groupmate recognition of T. pachypus can be achieved by olfactory cues.
Abstract:The morphology and diet characteristics of three Myotis species roosting in the same cave were studied in Anlong County, Guizhou from September to November 2005. The three mouse-eared bats were the Chinese water myotis (Myotis laniger) "body mass: (4.46±0.53) g, forearm: (34.63±1.45 mm)", fringed long-footed myotis (Myotis fimbriatus) "body mass: (5.15±1.76) g, forearm: (35.20±1.07) mm" and szechwan myotis (Myotis altarium) "body mass: (10.94±0.87) g, forearm: (45.21±1.15) mm". There were significant differences in the body masses of the three species. The forearm length of M. altarium was significantly longer than the other two species. M. laniger preyed mostly on dipsters and their larvae (79.7% in volume and 100% in frequency, Diptera). M. fimbriatus preyed mostly on dipsters and small beetles (59.6% and 91.3%, Diptera; 28.8% and 80.1%, Coleoptera). The prey of M. altarium was mostly ground-dwelling beetles (80.8% and 100%, Carabidae and Silphidae, Coleoptera). These dietary examinations indicate that the three species are highly adapted to different foraging habitats. Our work suggests that the spatial differences in foraging niches and trophic resource partitioning represent the major mechanism behind the levels of co-existence seen in this particular bat community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.