BackgroundA large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information.Methodology/Principal FindingsWe identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads.ConclusionOur study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.
We measured the effects of exposure to volatile compounds produced by host plants on the rate of capture of male Spodoptera exigua using synthetic sex pheromones. Exposure to volatile compounds stimulated strong electroantennographic responses of male S. exigua. The behavioral responses of male moths to combinations of sex pheromone and volatile compounds were tested in wind tunnel experiments. When lures were baited with synthetic sex pheromone plus benzaldehyde, phenylacetaldehyde, (Z)-3-hexenyl acetate, or linalool, respectively, the landing rate of S. exigua males was increased by 101.4%, 79.6%, 60.6%, and 34.3%, respectively, compared to sex pheromone alone. In field tests, traps baited with either pheromone + (E)-2-hexenal, pheromone + phenylacetaldehyde, pheromone + (Z)-3-hexenyl acetate, or pheromone + (Z)-3-hexenol enhanced moth catches by 38.8%, 34.6%, 24.6%, and 20.8%, respectively compared to traps baited with pheromone alone. In a second field experiment, more S. exigua males were trapped with a combination of a synthetic sex pheromone blend and several individual host plant volatiles compared to synthetic sex pheromone alone. These results suggest that some host plant volatiles enhance the orientation response of S. exigua male moths to sex pheromone sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.