BackgroundThis study aimed to investigate whether performance in a multiple object tracking (MOT) task could be improved incrementally with sports expertise, and whether differences between experienced and less experienced athletes, or non-athletes, were modulated by load.MethodsWe asked 22 elite and 20 intermediate basketball players, and 23 non-athletes, to perform an MOT task under three attentional load conditions (two, three, and four targets). Accuracies were analyzed to examine whether different levels of sports expertise influence MOT task performance.ResultsThe elite athletes displayed better tracking performance compared with the intermediate or non-athletes when tracking three or four targets. However, no significant difference was found between the intermediate athletes and the non-athletes. Further, no differences were observed among the three groups when tracking two targets.DiscussionThe results suggest that the effects of expertise in team ball sports could transfer to a non-sports-specific attention task. These transfer effects to general cognitive functions occur only in elite athletes with extensive training under higher attentional load.
Motor skills and the acquisition of brain plasticity are important topics in current research. The development of non-invasive white matter imaging technology, such as diffusion-tensor imaging and the introduction of graph theory make it possible to study the effects of learning skills on the connection patterns of brain networks. However, few studies have characterized the brain network topological features of motor skill learning, especially open skill. Given the need to interact with environmental changes in real time, we hypothesized that the brain network of high-level open-skilled athletes had higher transmission efficiency and stronger interaction in attention, visual and sensorimotor networks. We selected 21 high-level basketball players and 25 ordinary individuals as control subjects, collected their DTI data, built a network of brain structures, and used graph theory to analyze and compare the network properties of the two groups at global and regional levels. In addition, we conducted a correlation analysis on the training years of high-level athletes and brain network nodal parameters on the regional level to assess the relationship between brain network topological characteristics and skills learning. We found that on the global-level, the brain network of high-level basketball players had a shorter path length, small-worldness, and higher global efficiency. On the regional level, the brain nodes of the high-level athletes had nodal parameters that were significantly higher than those of control groups, and were mainly distributed in the visual network, the default mode network, and the attention network. The changes in brain node parameters were significantly related to the number of training years.
Background: The dorsolateral prefrontal cortex (DLPFC) in both hemispheres have a central integrative function for motor control and behavior. Understanding the hemispheric difference between DLPFC and ipsilateral motor cortex connection in the resting-state will provide fundamental knowledge to explain the different roles DLPFC plays in motor behavior. Purpose: The current study tested the interactions between the ipsilateral DLPFC and the primary motor cortex (M1) in each hemisphere at rest. We hypothesized that left DLPFC has a greater inhibitory effect on the ipsilateral M1 compared to the right DLPFC. Methods: Fourteen right-handed subjects were tested in a dual-coil paired-pulse paradigm using transcranial magnetic stimulation. The conditioning stimulus (CS) was applied to the DLPFC and the test stimulus (TS) was applied to M1. Interstimulus intervals (ISIs) between CS and TS were 2, 4, 6, 8, 10, 15, 20, 25, and 30 ms. The result was expressed as a percentage of the mean peak-to-peak amplitude of the unconditioned test pulse. Results: There was stronger inhibitory effect for the left compared to the right hemisphere at ISIs of 2 (p = 0.045), 10 (p = 0.006), 15 (p = 0.029) and 20 (p = 0.024) ms. There was no significant inhibition or facilitation at any ISI in the right hemisphere. Conclusions: The two hemispheres have distinct DLPFC and M1 cortico-cortical connectivity at rest. Left hemisphere DLPFC is dominant in inhibiting ipsilateral M1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.