We performed cell-based drug combination screening using an integrated droplet-based microfluidic system based on the sequential operation droplet array (SODA) technique. In the system, a tapered capillary connected with a syringe pump was used for multistep droplet manipulations. An oil-covered two-dimensional droplet array chip fixed in an x-y-z translation stage was used as the platform for cell culture and analysis. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel in the semiopen droplet array, using multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Long-term cell culture as long as 11 days was performed in oil-covered 500 nL droplets by changing the culture medium in each droplet every 24 h. The present system was applied in parallel schedule-dependent drug combination screening for A549 nonsmall lung cancer cells with the cell cycle-dependent drug flavopiridol and two anticancer drugs of paclitaxel and 5-fluorouracil. The highest inhibition efficiency was obtained with a schedule combination of 200 nM flavopiridol followed by 100 μM 5-fluorouracil. The drug consumption for each screening test was substantially decreased to 5 ng-5 μg, corresponding to 10-1000-fold reductions compared with traditional drug screening systems with 96-well or 384-well plates. The present work provides a novel and flexible droplet-based microfluidic approach for performing cell-based screening with complex and multistep operation procedures.
Digital PCR is a powerful method for absolute nucleic acid quantification with unprecedented accuracy and precision. To promote the wider use and application of digital PCR, several major challenges still exist, including reduction of cost, integration of the instrumental platform, and simplification of operations. This paper describes a reusable microfluidic device that generates nanoliter droplet arrays based on step emulsification for the on-chip multiplex digital PCR of eight samples simultaneously. The device contains two glass plates that can be quickly assembled with prefilled mineral oil. Droplets are simply generated through the arrays of step emulsification nozzles driven by a single pressure controller and are self-assembled into monolayer droplet arrays in U-shaped chambers. The use of mineral oil eliminates bubble generation; thus, no overpressure is required during thermocycling. Moreover, the device can be reused many times after disassembly and a brief cleaning procedure, which significantly reduces the cost of the device per dPCR assays. The device was able to detect template DNA at concentrations as low as 10 copies/μL with a dynamic range of approximately 4 logs. We applied this device in the quantitative assessment of HER2 copy number variation, which is important for targeted therapy and prognosis of breast cancer. The performance was validated by 16 clinical samples, obtaining similar results to commercial digital PCR. We envision that this low-cost, reusable, and user-friendly device can be broadly used in various applications.
This paper reports a fully integrated hand-held photometer based on the liquid-core waveguide (LCW) detection principle for nanoliter-scale samples. All components of the photometer including light-emitting diode (LED) light source, LCW flow cell, photodiode detector, dropper pump, electronic circuit, liquid-crystal display screen, and battery were fully integrated into a small-sized (12 x 4.5 x 2.1 cm) instrument. A bent optical coupler was developed to conduct the detection light into or out of the LCW flow cell through its sidewall. This design allowed the sampling probe, input and output optical couplers, and LCW flow cell to be integrated in a single Teflon AF capillary, which significantly simplified system structure, improved working reliability, and reduced sample consumption. Two UV-LEDs were used as light source in the photometer to achieve dual wavelength detection at 260 and 280 nm, which was applied to assess on-site the quality and quantity of DNA samples. The effective optical path length of the photometer was approximately 15 mm with a sample consumption of only 350 nL. The potential of the photometer applied in point of care testing was also demonstrated in the measurement of total cholesterol in serum samples.
Establishing cell migration assays in multiple different microenvironments is important in the study of tissue repair and regeneration, cancer progression, atherosclerosis, and arthritis. In this work, we developed a miniaturized and massive parallel microfluidic platform for multiple cell migration assays combining the traditional membrane-based cell migration technique and the droplet-based microfluidic technique. Nanoliter-scale droplets are flexibly assembled as building blocks based on a porous membrane to form microdroplet chains with diverse configurations for different assay modes. Multiple operations including in-droplet 2D/3D cell culture, cell co-culture and cell migration induced by a chemoattractant concentration gradient in droplet chains could be flexibly performed with reagent consumption in the nanoliter range for each assay and an assay scale-up to 81 assays in parallel in one microchip. We have applied the present platform to multiple modes of cell migration assays including the accurate cell migration assay, competitive cell migration assay, biomimetic chemotaxis assay, and multifactor cell migration assay based on the organ-on-a-chip concept, for demonstrating its versatility, applicability, and potential in cell migration-related research.
In this work, we developed a miniaturized palmtop high-speed capillary electrophoresis (CE) system integrating whole modules, including picoliter-scale sample injection, short capillary-based fast CE, high-voltage power supply, orthogonal laser induced fluorescence (LIF) detection, battery, system control, on-line data acquisition, processing, storage, and display modules. A strategy of minimalist miniaturization combining minimal system design and low-cost system construction was adopted to achieve the instrument miniaturization with extremely low cost, which is differing from the current microfabrication strategy used in most reported miniaturized CE systems. With such a strategy, the total size of the bioanalyzer was minimized to 90 × 75 × 77 mm (length × width × height) and the instrument cost was reduced to ca. $500, which demonstrated the smallest and lowest-cost CE instrument with LIF detection in so far reported systems. The present bioanalyzer also exhibited comparable analytical performances to previously-reported high-speed CE systems. A limit of detection of 1.02 nM sodium fluorescein was obtained. Fast separations were achieved for multiple types of samples as amino acids, amino acid enantiomers, DNA fragments, and proteins with high efficiency. We applied this instrument in colorectal cancer diagnosis for detecting KRAS mutation status by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.Currently, miniaturization of analytical instruments with the aim of application in field analysis, point of care testing, environmental analysis and aerospace analysis, has become one of the main trends of analytical instrument researches. Since 1990s, the appearance of microfluidic technology has provided a strong impetus for analytical instrument miniaturization due to its advantages of high efficiency, high throughput, low consumption, as well as system miniaturization, integration, and automatization. By now, it has already become the major approach for achieving miniaturization of analytical instruments. Various microfluidic chip-based miniaturized analytical systems have been developed, including high-speed capillary electrophoresis (CE) 1-3 , microchip-based nucleic acid analysis 4,5 , centrifugal microfluidic immunoassay 6 and high-performance liquid chromatography 7 .High-speed CE which was first reported by Jorgenson's group in 1991 8 , is a type of CE technique with features of high separation speed and high separation efficiency over traditional CE technique 9 . A typical high-speed CE system usually can achieve fast sample separation within tens of seconds using short separation length (<15 cm), narrow injected sample plug (e.g. <100 μm), and high separation electric field strength (>500 V/cm), while keeping high separation efficiency up to micrometer or submicrometer plate heights. Various high-speed CE systems have been developed and applied in biological 10,11 , medical 12,13 , chemical 14,15 , and environmental 16,17 analysis. Currently, the miniaturization of h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.