We examine the characteristics of secondary gravity waves (GWs) excited by a localized (in space) and intermittent (in time) body force in the atmosphere. This force is a horizontal acceleration of the background flow created when primary GWs dissipate and deposit their momentum on spatial and temporal scales of the wave packet. A broad spectrum of secondary GWs is excited with horizontal scales much larger than that of the primary GW. The polarization relations cause the temperature spectrum of the secondary GWs generally to peak at larger intrinsic periods τIr and horizontal wavelengths λH than the vertical velocity spectrum. We find that the one‐dimensional spectra (with regard to frequency or wave number) follow lognormal distributions. We show that secondary GWs can be identified by a horizontally displaced observer as “fishbone” or “>” structures in z − t plots whereby the positive and negative GW phase lines meet at the “knee,” zknee, which is the altitude of the force center. We present two wintertime cases of lidar temperature measurements at McMurdo, Antarctica (166.69°E, 77.84°S) whereby fishbone structures are seen with zknee=43 and 52 km. We determine the GW parameters and density‐weighted amplitudes for each. We show that these parameters are similar below and above zknee. We verify that the GWs with upward (downward) phase progression are downward (upward) propagating via use of model background winds. We conclude that these GWs are likely secondary GWs having ground‐based periods τr=6–10 hr and vertical wavelengths λz=6–14 km, and that they likely propagate primarily southward.
Persistent, dominant, and large‐amplitude gravity waves with 3–10 h periods and vertical wavelengths ~20–30 km are observed in temperatures from the stratosphere to lower thermosphere with an Fe Boltzmann lidar at McMurdo, Antarctica. These waves exhibit characteristics of inertia‐gravity waves in case studies, yet they are extremely persistent and have been present during every lidar observation. We characterize these 3–10 h waves in the mesosphere and lower thermosphere using lidar temperature data in June from 2011 to 2015. A new method is applied to identify the major wave events from every lidar run longer than 12 h. A continuous 65 h lidar run on 28–30 June 2014 exhibits a 7.5 h wave spanning ~60 h, and 6.5 h and 3.4 h waves spanning 40 and 45 h, respectively. Over the course of 5 years, 323 h of data in June reveal that the major wave periods occur in several groups centered from ~3.5 to 7.5 h, with vertical phase speeds of 0.8–2 m/s. These 3–10 h waves possess more than half of the spectral energy for ~93% of the time. A rigorous prewhitening, postcoloring technique is introduced for frequency power spectra investigation. The resulting spectral slopes are unusually steep (−2.7) below ~100 km but gradually become shallower with increasing altitude, reaching about −1.6 at 110 km. Two‐dimensional fast Fourier transform spectra confirm that these waves have a uniform dominant vertical wavelength of 20–30 km across periods of 3.5–10 h. These statistical features shed light on the wave source and pave the way for future research.
Five years of Fe Boltzmann lidar's Rayleigh temperature data from 2011 to 2015 at McMurdo are used to characterize gravity wave potential energy mass density (Epm), potential energy volume density (Epv), vertical wave number spectra, and static stability N2 in the stratosphere 30–50 km. Epm (Epv) profiles increase (decrease) with altitude, and the scale heights of Epv indicate stronger wave dissipation in winter than in summer. Altitude mean Etrue¯pm and Etrue¯pv obey lognormal distributions and possess narrowly clustered small values in summer but widely spread large values in winter. Etrue¯pm and Etrue¯pv vary significantly from observation to observation but exhibit repeated seasonal patterns with summer minima and winter maxima. The winter maxima in 2012 and 2015 are higher than in other years, indicating interannual variations. Altitude mean trueN2¯ varies by ~30–40% from the midwinter maxima to minima around October and exhibits a nearly bimodal distribution. Monthly mean vertical wave number power spectral density for vertical wavelengths of 5–20 km increases from summer to winter. Using Modern Era Retrospective Analysis for Research and Applications version 2 data, we find that large values of Etrue¯pm during wintertime occur when McMurdo is well inside the polar vortex. Monthly mean Etrue¯pm are anticorrelated with wind rotation angles but positively correlated with wind speeds at 3 and 30 km. Corresponding correlation coefficients are −0.62, +0.87, and +0.80, respectively. Results indicate that the summer‐winter asymmetry of Etrue¯pm is mainly caused by critical level filtering that dissipates most gravity waves in summer. Etrue¯pm variations in winter are mainly due to variations of gravity wave generation in the troposphere and stratosphere and Doppler shifting by the mean stratospheric winds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.